
 Full-Text Search Specialty Data Store
User’s Guide

Full-Text Search SDS Version 11.9.2

Document ID: 36521-01-1192-01

Last Revised: September 1, 1998

Principal author: Lori Johnson

Contributing authors: Martin Ash, Pam Gilpatrick, Vic Mesenzeff, Bill Seiger

Document ID: 36521-01-1192

This publication pertains to Full-Text Search SDS Version 11.9.2 of the Sybase
database management software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is
subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the
terms of that agreement.

Document Orders

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the above fax number. All other international customers should
contact their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

Copyright © 1989–1998 by Sybase, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise,
without the prior written permission of Sybase, Inc.

Sybase Trademarks

Sybase, the Sybase logo, APT-FORMS, Certified SYBASE Professional, Column
Design, Data Workbench, First Impression, InfoMaker, ObjectCycle, PowerBuilder,
PowerDesigner, Powersoft, Replication Server, S-Designor, SQL Advantage, SQL
Debug, SQL SMART, Transact-SQL, Visual Components, VisualWriter, and VQL
are registered trademarks of Sybase, Inc. Adaptable Windowing Environment,
Adaptive Component Architecture, Adaptive Server, Adaptive Server Anywhere,
Adaptive Server Enterprise Monitor, Adaptive Server IQ, Adaptive Warehouse,
ADA Workbench, AnswerBase, Application Manager, AppModeler, APT-Build,
APT-Edit, APT-Execute, APT-Library, APT-Translator, APT Workbench, Backup
Server, BayCam, Bit-Wise, ClearConnect, Client-Library, Client Services,
CodeBank, Connection Manager, DataArchitect, Database Analyzer, DataExpress,
Data Pipeline, DataWindow, DB-Library, dbQueue, Developers Workbench,
DirectConnect, Distribution Agent, Distribution Director, Embedded SQL, EMS,
Enterprise Client/Server, Enterprise Connect, Enterprise Manager, Enterprise SQL
Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Formula One, Gateway Manager, GeoPoint,
ImpactNow, InformationConnect, InstaHelp, InternetBuilder, iScript, Jaguar CTS,
jConnect for JDBC, KnowledgeBase, Logical Memory Manager,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI

Database Gateway, media.splash, MetaBridge, MetaWorks, MethodSet, Net-
Gateway, NetImpact, Net-Library, Next Generation Learning, ObjectConnect,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client, Open
ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open
Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen,
PC APT-Execute, PC DB-Net, PC Net Library, Power++, Power AMC, PowerBuilt,
PowerBuilt with PowerBuilder, Power Dynamo, Power J, PowerScript, PowerSite,
PowerSocket, Powersoft Portfolio, PowerStudio, Power Through Knowledge,
PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QuickStart
DataMart, QuickStart MediaMart, QuickStart ReportSmart, Replication Agent,
Replication Driver, Replication Server Manager, Report-Execute, Report
Workbench, Resource Manager, RW-DisplayLib, RW-Library, SAFE, SDF, Secure
SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Code Checker, SQL Edit, SQL Edit/TPU, SQL
Modeler, SQL Remote, SQL Server, SQL Server/CFT, SQL Server/DBM, SQL
Server Manager, SQL Server SNMP SubAgent, SQL Station, SQL Toolset, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase
SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture,
Sybase User Workbench, SybaseWare, SyBooks, System 10, System 11, the System
XI logo, SystemTools, Tabular Data Stream, The Enterprise Client/Server
Company, The Future is Wide Open, The Learning Connection, The Model for
Client/Server Solutions, The Online Information Center, Translation Toolkit,
Turning Imagination Into Reality, UNIBOM, Unilib, Uninull, Unisep, Unistring,
URK Runtime Kit for UniCode, Viewer, VisualSpeller, WarehouseArchitect,
Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-
Server, and XP Server are trademarks of Sybase, Inc. 1/98

All other company and product names used herein may be trademarks or
registered trademarks of their respective companies.

Restricted Rights

Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth
in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Full-Text Search Specialty Data Store User’s Guide v

Table of Contents

About This Book
Audience . xv
How to Use This Book . xv
Adaptive Server Enterprise Documents . xvi

Other Sources of Information . xviii
Conventions . xviii

Directory Paths . xviii
Formatting SQL Statements . xix
SQL Syntax Conventions. xix

Case . xx
Obligatory Options {You Must Choose At Least One} xx
Optional Options [You Don’t Have to Choose Any]. xx
Ellipsis: Do It Again (and Again)... . xxi

If You Need Help . xxi

1. Introduction
What Is the Full-Text Search Specialty Data Store? . 1-1
Capabilities of the Full-Text Search Engine . 1-1
Capabilities of the Enhanced Full-Text Search Engine . 1-2

2. Understanding the Full-Text Search Engine
Components of the Full-Text Search Engine . 2-1

Filters . 2-1
The Source Table . 2-1
The Verity Collections . 2-2
The text_db Database . 2-2

The vesaux Table . 2-3
The vesauxcol Table. 2-3

The Index Table . 2-3
The text_events Table. 2-4
Relationships Between the Components. 2-5

How a Full-Text Search Works . 2-6

3. Configuring Adaptive Server for Full-Text Searches
Configuring Adaptive Server for a Full-Text Search Engine . 3-1

vi Table of Contents

Full-Text Search SDS Version 11.9.2

Enabling Configuration Parameters . 3-1
Running the installtextserver Script. 3-1

Editing the installtextserver Script . 3-2
Running the installtextserver Script . 3-3

Running the installmessages Script . 3-3
Running the installevent Script . 3-4

Editing the installevent Script . 3-4
Running the installevent Script . 3-5

Creating and Maintaining the Text Indexes . 3-5
Setting Up Source Tables for Indexing. 3-6

Adding an IDENTITY Column to a Source Table 3-6
Adding a Unique Index to an IDENTITY Column 3-7

Creating the Text Index and Index Table. 3-7
Specifying Multiple Columns When Creating a Text Index 3-8

Bringing the Database Online for Full-Text Searches 3-9
Propagating Changes to the Text Index. 3-9
Replicating Text Indexes . 3-10
Example: Enabling a New Database for Text Searches 3-11

Step 1. Verify That the text_events Table Exists. 3-11
Step 2. Check for an IDENTITY Column . 3-12
Step 3. Create a Unique Index on the IDENTITY Column. 3-12
Step 4. Create the Text Index and Index Table 3-12
Step 5. Bring the Database Online for a Full-Text Search 3-12

4. Setting Up Verity Functions
Enabling Query-By-Example, Summarization, and Clustering 4-1

Editing the Master style.prm File. 4-2
Editing Individual style.prm Files . 4-3

Setting Up a Column to Use As a Sort Specification . 4-4
Using Filters on Text That Contains Tags. 4-6
Creating a Custom Thesaurus (Enhanced Version Only) . 4-7

Examining the Default Thesaurus (Optional) . 4-8
Creating the Control File . 4-9

Control File Syntax. 4-9
Creating the Thesaurus . 4-10
Replacing the Default Thesaurus with the Custom Thesaurus 4-10

Creating Topics (Enhanced Version Only) . 4-11
Creating an Outline File. 4-12
Creating a Topic Set Directory . 4-13
Creating a Knowledge Base Map . 4-14

Full-Text Search Specialty Data Store User’s Guide vii

Full-Text Search SDS Version 11.9.2

Defining the Location of the Knowledge Base Map 4-14
Executing Queries Against Defined Topics. 4-14
Troubleshooting Topics . 4-15

5. Writing Full-Text Search Queries
Components of a Full-Text Search Query . 5-1
Pseudo Columns in the Index Table. 5-2

Using the score Column to Relevance-Rank Search Results 5-3
Using the sort_by Column to Specify a Sort Order. 5-4
Using the summary Column to Summarize Documents 5-6
Using Pseudo Columns to Request Clustered Result Sets 5-6

Preparing to Use Clustering . 5-7
Writing Queries Requesting a Clustered Result Set 5-7

Full-Text Search Operators . 5-8
Considerations When Using Verity Operators. 5-9
Using the Verity Operators . 5-10

accrue . 5-11
and, or . 5-11
complement . 5-11
in . 5-11
like . 5-12
near, near/n . 5-13
or . 5-13
phrase . 5-13
paragraph . 5-14
product . 5-14
sentence . 5-14
stem . 5-15
sum . 5-15
thesaurus. 5-15
topic (Enhanced Version Only) . 5-16
wildcard . 5-17
word . 5-18
yesno . 5-18

Operator Modifiers . 5-19

6. System Administration
Starting the Full-Text Search Engine on UNIX . 6-1

Creating the Runserver File. 6-1
Starting the Full-Text Search Engine on Windows NT . 6-2

viii Table of Contents

Full-Text Search SDS Version 11.9.2

Starting the Full-Text Search Engine As a Service 6-3
Shutting Down the Full-Text Search Engine . 6-4
Modifying the Configuration Parameters . 6-4

Modifying Values in the Standard Version . 6-6
Modifying Values in the Enhanced Version . 6-7
Setting the Default Language . 6-7
Setting the Default Character Set . 6-8
Setting the Default Sort Order . 6-9
Setting Trace Flags . 6-10
Setting Open Server Trace Flags . 6-12
Setting Case Sensitivity . 6-12

Backup and Recovery for the Standard Full-Text Search Engine 6-13
Backing Up Verity Collections . 6-14
Restoring Verity Collections and Text Indexes from Backup 6-15

Backup and Recovery for the Enhanced Full-Text Search Engine 6-16
Backing Up Verity Collections . 6-16
Restoring Collections and Text Indexes from Backup. 6-17

7. Performance and Tuning
Updating Existing Indexes. 7-1
Increasing Query Performance . 7-2

Limiting the Number of Rows . 7-2
Ensuring the Correct Join Order for Queries . 7-2

Reconfiguring Adaptive Server . 7-3
cis cursor rows . 7-3
cis packet size. 7-3

Reconfiguring the Full-Text Search Engine . 7-4
batch_size . 7-4
min_sessions and max_sessions . 7-4

Using sp_text_notify . 7-5
Configuring Multiple Full-Text Search Engines . 7-5

Creating Multiple Full-Text Search Engines at Start-Up. 7-5
Adding Full-Text Search Engines . 7-6

A. System Procedures
sp_clean_text_events . A-2
sp_clean_text_indexes . A-3
sp_create_text_index . A-4
sp_drop_text_index . A-7

Full-Text Search Specialty Data Store User’s Guide ix

Full-Text Search SDS Version 11.9.2

sp_help_text_index . A-9
sp_optimize_text_index . A-10
sp_redo_text_events. A-12
sp_refresh_text_index . A-14
sp_show_text_online . A-16
sp_text_cluster . A-18
sp_text_configure . A-21
sp_text_dump_database . A-23
sp_text_kill. A-26
sp_text_load_index . A-28
sp_text_notify . A-30
sp_text_online . A-31

B. Sample Files
Default textsvr.cfg Configuration File . B-1
The sample_text_main.sql Script. B-4
Sample Files Illustrating Full-Text Search Engine Features . B-5

Custom Thesaurus . B-5
Topics . B-5
Clustering, Summarization, and Query-by-Example B-6

getsend Sample Program . B-6

C. Unicode Support

Index

x Table of Contents

Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide xi

List of Figures

Figure 2-1: Components of the Full-Text Search engine ..2-6
Figure 2-2: Processing a full-text search query..2-8

xii List of Figures

Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide xiii

List of Tables

Table 1: Syntax statement conventions ...xix
Table 2-1: Columns in the vesaux table ..2-3
Table 2-2: Columns in the vesauxcol table...2-3
Table 2-3: Columns in the text_events table ..2-4
Table 5-1: Full-Text Search engine pseudo columns...5-2
Table 5-2: Values for the sort_by pseudo column ...5-5
Table 5-3: Verity search operators ...5-8
Table 5-4: Alternative Verity syntax..5-10
Table 5-5: Full-Text Search engine wildcard characters ...5-17
Table 5-6: Verity operator modifiers ...5-19
Table 6-1: Definition of flags in the runserver file...6-1
Table 6-2: Configuration parameters ..6-4
Table 6-3: Configuration parameters for Enhanced version only...6-6
Table 6-4: vdkLanguage configuration parameters..6-8
Table 6-5: Verity character sets...6-9
Table 6-6: Sort order values for the configuration file..6-9
Table 6-7: Full-Text Search engine trace flags ..6-11
Table 6-8: Open Server trace flags ...6-12
Table A-1: System procedures... A-1
Table A-2: Clustering configuration parameters.. A-18
Table A-3: Values for backupdbs .. A-23

xiv List of Tables

Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide xv

About This Book

This book explains how to use the Full-Text Search Specialty Data
Store product with Sybase Adaptive Server Enterprise. Although
this book refers to Adaptive Server throughout, the instructions for
using it with OmniConnect™ are the same.

There are two versions of the Full-Text Search Specialty Data Store:

• The Standard version is included with your purchase of Adaptive
Server Enterprise

• The Enhanced version is purchased separately and has additional
capabilities

This book describes the features and functionality of both versions.

Audience

This book is for System Administrators who are configuring
Adaptive Server for a Full-Text Search Specialty Data Store and for
users who are performing full-text searches on Adaptive Server data.

How to Use This Book

This book includes the following chapters:

• Chapter 1, “Introduction,” provides an overview of Full-Text
Search Specialty Data Store.

• Chapter 2, “Understanding the Full-Text Search Engine,”
describes the components of the Full-Text Search Specialty Data
Store and how it works.

• Chapter 3, “Configuring Adaptive Server for Full-Text Searches,”
describes how to configure Adaptive Server so that Full-Text
Search Specialty Data Store can perform full-text searches on the
Adaptive Server databases.

• Chapter 4, “Setting Up Verity Functions,” describes the setup you
need to do before issuing full-text search queries.

• Chapter 5, “Writing Full-Text Search Queries,” describes the
components you use to write full-text search queries.

• Chapter 6, “System Administration,” provides information about
system administration issues.

xvi About This Book

Adaptive Server Enterprise Documents Full-Text Search SDS Version 11.9.2

• Chapter 7, “Performance and Tuning,” provides information
about performance and tuning issues.

• Appendix A, “System Procedures,” describes Full-Text Search
Specialty Data Store system procedures.

• Appendix B, “Sample Files,” contains the text of the textsvr.cfg
file, describes the sample files included with Full-Text Search
Specialty Data Store, and discusses issues regarding the
sample_text_main.sql script.

• Appendix C, “Unicode Support,” describes how to configure
Full-Text Search Specialty Data Store to use Unicode.

Adaptive Server Enterprise Documents

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

• The Installation and Release Bulletin for your platform – contains
last-minute information that was too late to be included in the
books.

A more recent version of the Installation and Release Bulletin may
be available on the World Wide Web. To check for critical
product or document information that was added after the
release of the product CD, use Sybase Technical Library on the
Web.

• The Adaptive Server installation documentation for your
platform – describes installation and upgrade procedures for all
Adaptive Server and related Sybase products.

• The Adaptive Server configuration documentation for your
platform – describes configuring a server, creating network
connections, configuring for optional functionality, such as
auditing, installing most optional system databases, and
performing operating system administration tasks.

• What’s New in Adaptive Server Enterprise? – describes the new
features in Adaptive Server release 11.5, the system changes
added to support those features, and the changes that may affect
your existing applications.

• Navigating the Documentation for Adaptive Server – an electronic
interface for using Adaptive Server. This online document
provides links to the concepts and syntax in the documentation
that are relevant to each task.

Full-Text Search Specialty Data Store User’s Guide xvii

Full-Text Search SDS Version 11.9.2 Adaptive Server Enterprise Documents

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This
manual serves as a textbook for beginning users of the database
management system. This manual also contains descriptions of
the pubs2 and pubs3 sample databases.

• System Administration Guide – provides in-depth information
about administering servers and databases. This manual includes
instructions and guidelines for managing physical resources and
user and system databases, and specifying character conversion,
international language, and sort order settings.

• Adaptive Server Reference Manual – contains detailed information
about all Transact-SQL commands, functions, procedures, and
datatypes. This manual also contains a list of the Transact-SQL
reserved words and definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive
Server for maximum performance. This manual includes
information about database design issues that affect
performance, query optimization, how to tune Adaptive Server
for very large databases, disk and cache issues, and the effects of
locking and cursors on performance.

• The Utility Programs manual for your platform – documents the
Adaptive Server utility programs, such as isql and bcp, which are
executed at the operating system level.

• Security Administration Guide – explains how to use the security
features provided by Adaptive Server to control user access to
data. This manual includes information about how to add users
to Adaptive Server, administer both system and user-defined
roles, grant database access to users, and manage remote
Adaptive Servers.

• Security Features User’s Guide – provides instructions and
guidelines for using the security options provided in Adaptive
Server from the perspective of the non-administrative user.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to
system problems frequently encountered by users.

• Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect – explains how to use the Adaptive
Server Component Integration Services feature to connect remote
Sybase and non-Sybase databases.

xviii About This Book

Conventions Full-Text Search SDS Version 11.9.2

• Adaptive Server Glossary – defines technical terms used in the
Adaptive Server documentation.

• Master Index for Adaptive Server Publications – combines the
indexes of the Adaptive Server Reference Manual, Component
Integration Services User’s Guide, Performance and Tuning Guide,
Security Administration Guide, Security Features User’s Guide,
System Administration Guide, and Transact-SQL User’s Guide.

Other Sources of Information

Use the Sybase Technical Library CD and the Technical Library Web
site to learn more about your product:

• Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to
access technical information about your product in an easy-to-
use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and
starting Technical Library.

• Technical Library Web site is an HTML version of the Technical
Library CD that you can access using a standard Web browser.

To use the Technical Library Web site, go to www.sybase.com
and choose Documentation, choose Technical Library, then
choose Product Manuals.

Conventions

Directory Paths

For readability, directory paths in this manual are in UNIX format.
On Windows NT, substitute $SYBASE with %SYBASE% and replace
slashes (/) with backslashes (\). For example, replace this user input:

$SYBASE/sds/text/scripts

with:

%SYBASE%\sds\text\scripts

Full-Text Search Specialty Data Store User’s Guide xix

Full-Text Search SDS Version 11.9.2 Conventions

Formatting SQL Statements

SQL is a free-form language: there are no rules about the number of
words you can put on a line or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a
new line. Clauses that have more than one part extend to additional
lines, which are indented.

SQL Syntax Conventions

The conventions for syntax statements in this manual are as follows:

• Syntax statements (displaying the syntax and all options for a
command) are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

selec t column_name
from table_name
where search_conditions

Table 1: Syntax statement conventions

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in bold Courier in
syntax statements and in bold Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill in, are in
italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options
shown as you like, separating your choices with commas to be
typed as part of the command.

xx About This Book

Conventions Full-Text Search SDS Version 11.9.2

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords,
italics for user-supplied words.

• Examples showing the use of Transact-SQL commands are
printed like this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------- ------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case

In this manual, most of the examples are in lowercase. However, you
can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as
table names, depends on the sort order installed on Adaptive Server.
You can change case sensitivity for single-byte character sets by
reconfiguring the Adaptive Server sort order. See “Changing the
Default Character Set, Sort Order, or Language” in Chapter 19 of the
System Administration Guide for more information.

Obligatory Options {You Must Choose At Least One}

• Curly Braces and Vertical Bars: Choose one and only one option.

{die_on_your_feet | live_on_your_knees |
live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Optional Options [You Don’t Have to Choose Any]

• One Item in Square Brackets: You don’t have to choose it.

[anchovies]

Full-Text Search Specialty Data Store User’s Guide xxi

Full-Text Search SDS Version 11.9.2 If You Need Help

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

• Square Brackets and Commas: Choose none, one, or more than
one option. If you choose more than one, separate your choices
with commas.

[extra_cheese, avocados, sour_cream]

Ellipsis: Do It Again (and Again)...

An ellipsis (...) means that you can repeat the last unit as many times
as you like. In this syntax statement, buy is a required keyword:

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

If You Need Help

Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve a problem using the
manuals or online help, please have the designated person contact
Sybase Technical Support or the Sybase subsidiary in your area.

xxii About This Book

If You Need Help Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide 1-1

1 Introduction 1.

What Is the Full-Text Search Specialty Data Store?

Full-Text Search Specialty Data Store (referred to in this book as the
Full-Text Search engine) is an Open Server application built on
Verity Search ’97. Adaptive Server connects to the Full-Text Search
engine through Component Integration Services (CIS), allowing
queries written in the Verity query language to perform full-text
searches on Adaptive Server data.

There are two versions of the Full-Text Search Specialty Data Store:

• The Standard version is included with your purchase of Adaptive
Server Enterprise

• The Enhanced version is purchased separately and has additional
capabilities

This book describes the features and functionality of both versions.
For more information about the Verity product and the Verity
operators used to perform full-text searches, see the Verity Web site:

http://www.verity.com

Capabilities of the Full-Text Search Engine

The Full-Text Search Specialty Data Store product performs
powerful, full-text searches on Adaptive Server data. In Adaptive
Server, without the Full-Text Search engine, you can search text
columns only for data that matches what you specify in a select
statement. For example, if a table contains documents about dog
breeds, and you perform a search on the words “Saint Bernard,” the
query produces only the rows that include “Saint Bernard” in the
text column.

With the Full-Text Search engine, you can expand queries on text
columns to do the following:

• Rank the results by order of how often a searched item appears in
the selected document. For example, you can obtain a list of
document titles that reference the words “Saint Bernard” five or
more times.

• Select documents in which the words you search for appear
within n number of words of each other. For example, you can
search only for the documents that include the words “Saint

1-2 Introduction

Capabilities of the Enhanced Full-Text Search Engine Full-Text Search SDS Version 11.9.2

Bernard” and “Swiss Alps” and that appear within 10 words of
each other.

• Select documents that include all the search elements you specify
within a single paragraph or sentence. For example, you can
query the documents that include the words “Saint Bernard” in
the same paragraph or sentence as the words “Swiss Alps.”

• Select documents that contain one or more synonyms of the word
you specify. For example, you can select documents that discuss
“dogs,” and it returns documents that contain the words “dogs,”
“canine,” “pooch,” “pup,” and so on.

Capabilities of the Enhanced Full-Text Search Engine

In addition to the Full-Text Search engine capabilities described
above, the Enhanced Full-Text Search engine provides additional
functionality that allows you to refine your search. Using Enhanced
Full-Text Search engine, you can:

• Create your own custom thesaurus. For example, you can create
a custom thesaurus that includes “working dogs,” “St. Bernard,”
“large dogs,” and “European Breeds” as synonyms for “Saint
Bernard.”

• Create topics that specify the search criteria for a query. For
example, you can create a topic that returns documents that
include the phrase “Saint Bernard” or “St. Bernard,” followed by
documents that include the phrase “working dogs,” “large
dogs,” or “European Breeds.”

• Return documents grouped in clusters to give you a sense of the
major topics covered in the documents.

• Select a section of relevant text in a document and search for
other, similar documents.

• Sort documents using up to 16 sort orders. The Standard Full-Text
Search engine allows only a single sort order.

Enhanced Full-Text Search engine also provides additional system
administration features such as:

• Integrated backup and restore capabilities

• Ability to change the value of a configuration parameter using a
system procedure

• Ability to optimize indexes for text searches when your server is
inactive, to enhance performance

Full-Text Search Specialty Data Store User’s Guide 1-3

Full-Text Search SDS Version 11.9.2 Capabilities of the Enhanced Full-Text Search Engine

• Additional system management reports for viewing setup
information

• Ability to bring databases online automatically for text searches

1-4 Introduction

Capabilities of the Enhanced Full-Text Search Engine Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide 2-1

2 Understanding the Full-Text Search
Engine 2.

This chapter describes how a Full-Text Search engine works. Topics
include:

• Components of the Full-Text Search Engine 2-1

• How a Full-Text Search Works 2-6

Components of the Full-Text Search Engine

The Full-Text Search engine uses the following components to
provide full-text search capabilities:

• Filters for a variety of document types

• Source table

• Verity collections

• text_db database

• Index table

• text_events table

Filters

The text documents in a database can be stored in a variety of
document types (Microsoft Word, SGML, HTML, FrameMaker, and
so on). Verity includes a series of filters that allow you to index these
document types.

You do not have to configure Adaptive Server or Full-Text Search
engine to use these filters; they automatically detect the document
type and apply the correct filter.

The Source Table

The source table is a user table maintained by Adaptive Server. It
contains one or more columns using the text, image, char, varchar,
datetime, or small datetime datatype, which holds the data to be
searched. With the Enhanced Full-Text Search engine, the source
table can also have int, smallint, and tinyint columns, which holds the
data to be searched. The source table must have an IDENTITY

2-2 Understanding the Full-Text Search Engine

Components of the Full-Text Search Engine Full-Text Search SDS Version 11.9.2

column, which is used to join with the id column of an index table
during text searches.

The source table can be a local table, which holds the actual data, or
it can be a proxy table that is mapped to remote data.

The Verity Collections

The Full-Text Search engine uses the Verity collections, which are
located in $SYBASE/sds/text/collections. When you create the text
indexes, as described in “Creating the Text Index and Index Table”
on page 3-7, Verity creates a collection, which is a directory that
implements a text index. This collection is queried by the Full-Text
Search engine. For more information about Verity collections, see the
Verity Web site:

http://www.verity.com

The text_db Database

During the installation of the Full-Text Search engine, a database
named text_db is added to Adaptive Server using the installation
script installtextserver, as described in “Running the installtextserver
Script” on page 3-1. The database does not contain any user data, but
contains two support tables: vesaux and vesauxcol. These tables
contain the metadata used by the Full-Text Search engine to maintain
integrity between the Adaptive Server source tables and the Verity
collections.

When updating the collections after an insert, update, or delete is
made to an indexed column, the Full-Text Search engine queries the
vesaux and vesauxcol tables. These tables determine which collections
contain the modified columns so that all affected collections are
updated. The Full-Text Search engine also uses these tables when it is
brought online, to make sure that all necessary collections exist.

Full-Text Search Specialty Data Store User’s Guide 2-3

Full-Text Search SDS Version 11.9.2 Components of the Full-Text Search Engine

The vesaux Table

The columns in the vesaux table are described in Table 2-1.

The vesauxcol Table

The columns in the vesauxcol table are described in Table 2-2.

The Index Table

The index table provides a means of locating and searching
documents stored in the source table. The index table is maintained
by the Full-Text Search engine and has an id column that maps to the
IDENTITY column of the corresponding source table. The
IDENTITY value from the row in the source table is stored with the
data in the Verity collections, which allows the source and index
tables to be joined. Although the index table is stored and
maintained by the Full-Text Search engine, it functions as a local

Table 2-1: Columns in the vesaux table

Column Name Description

id IDENTITY column

object_name Name of the source table on which the external index
is being created

option_string Text index creation options

collection_id Name of the Verity collection

key_column Name of the IDENTITY column in the source table

svrid Server ID of the Full-Text Search engine maintaining
the collection

Table 2-2: Columns in the vesauxcol table

Column Name Description

id ID of the referenced row in the vesaux table

col_name Name of the column for which you are searching

col_type Column type (text, image, char, varchar, datetime,
smalldatetime; with the Enhanced Full-Text Search
engine, also int, smallint, and tinyint)

2-4 Understanding the Full-Text Search Engine

Components of the Full-Text Search Engine Full-Text Search SDS Version 11.9.2

table to Adaptive Server through the Component Integration
Services feature.

The index table contains special columns, called pseudo columns,
that are used by the Full-Text Search engine to determine the
parameters of the search and the location of the text data in the
source table. Pseudo columns have no associated physical storage—
the values of a pseudo column are valid only for the duration of the
query and are removed immediately after the query finishes
running.

For example, when you use the score pseudo column in a query, to
rank each document according to how well the document matches
the query, you may have to use a score of 15 to find references to the
phrase “small Saint Bernards” in the text database. This phrase does
not occur very often, and a low score value broadens the search to
include documents that have a small number of occurrences of the
search criteria. However, if you are searching for a phrase that is
common, like “large Saint Bernards,” you could use a score of 90,
which would limit the search to those documents that have many
occurrences of the search criteria.

You use the score column and the other pseudo columns, id,
index_any, sort_by, summary, and max_docs, to specify the parameters
to include in your search. For a description of the pseudo columns,
see “Pseudo Columns in the Index Table” on page 5-2.

The text_events Table

Each database containing tables referenced by a text index must
contain an events table, which logs inserts, updates, and deletes to
indexed columns. The name of this table is text_events. It is used to
propagate updated data to the Verity collections.

The columns in the text_events table are described in Table 2-3.

Table 2-3: Columns in the text_events table

Column Name Description

event_id IDENTITY column.

id ID of the row that was updated, inserted, or deleted.

tableid Name of the table that contains the row that was
updated, inserted, or deleted.

Full-Text Search Specialty Data Store User’s Guide 2-5

Full-Text Search SDS Version 11.9.2 Components of the Full-Text Search Engine

Relationships Between the Components

The relationships between the Full-Text Search engine components
are shown in Figure 2-1.

columnid Name of the column that the text index was created
on.

event_date Date and time of the update, insert, or delete.

event_type Type of update (update, insert, or delete).

event_status Indicates whether the update, insert, or delete has
been propagated to the collections.

srvid Server ID of the Full-Text Search engine maintaining
the collection.

Table 2-3: Columns in the text_events table (continued)

Column Name Description

2-6 Understanding the Full-Text Search Engine

How a Full-Text Search Works Full-Text Search SDS Version 11.9.2

:

Figure 2-1: Components of the Full-Text Search engine

How a Full-Text Search Works

To perform a full-text search, you enter a select statement that joins
the IDENTITY column from the source table with the id column of
the index table, using pseudo columns as needed to define the
search. For example, the following query searches for documents in
the blurbs table of the pubs2 database in which the word “Greek”
appears near the word “Gustibus” (the i_blurbs table is the index
table):

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

Adaptive Server and the Full-Text Search engine split the query
processing, as follows:

Full-Text Search engine

collections

Verity collections. CIS

Adaptive Server

vesaux
The Full-Text Search engine
connects to Adaptive
Server through an Open
Client connection.

text_db database for Full-Text Search

Source table

text columns
contains the actual

vesauxcol

indexsource

Adaptive Server user database(s) containing
the text tables (for example, pubs2)

id id

engine metadata

maps Verity collections
to the Adaptive Server
index table

connects to Full-Text
Search engine
through CIS

text_eventstext_events table
logs changes to
indexed
columns

Full-Text Search Specialty Data Store User’s Guide 2-7

Full-Text Search SDS Version 11.9.2 How a Full-Text Search Works

1. The Full-Text Search engine processes the query:

select t1.score, t1.id
from i_blurbs t1
where t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

The select statement includes the Verity operator near and the
pseudo columns score, max_docs, and index_any. The operator
and pseudo columns provide the parameters for the search on
the Verity collections—they narrow the result set from the entire
copy column to the 10 documents in which the words “Greek”
and “Gustibus” appear closest to each other.

2. Adaptive Server processes the following select statement on the
result set that is returned by the Full-Text Search engine in step 1:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id

This joins the blurbs and i_blurbs tables (the source table and the
index table, respectively) on the IDENTITY column of the blurbs
table and the id column of the i_blurbs table.

Figure 2-1 describes how Adaptive Server and the Full-Text Search
engine process the query.

2-8 Understanding the Full-Text Search Engine

How a Full-Text Search Works Full-Text Search SDS Version 11.9.2

Figure 2-2: Processing a full-text search query

Adaptive Server

id

1. Index Query

i_blurbs
id

blurbs
id

collections

3. Results

Full-Text Search engine

2. Verity Query4. Adaptive Server Query

5.

1. Adaptive Server sends the index query to the Full-Text Search engine.
2. The Full-Text Search engine processes the Verity operators in the query and produces a result set

from the collections.
3. The Full-Text Search engine returns the result set to Adaptive Server.
4. Adaptive Server processes the select statement on the local table.
5. Adaptive Server displays the results of the query.

Full-Text Search Specialty Data Store User’s Guide 3-1

3 Configuring Adaptive Server for
Full-Text Searches 3.

This chapter describes how to configure Adaptive Server to perform
full-text searches. Topics include:

• Configuring Adaptive Server for a Full-Text Search Engine 3-1

• Creating and Maintaining the Text Indexes 3-5

Configuring Adaptive Server for a Full-Text Search Engine

The Full-Text Search engine is a remote server that Adaptive Server
connects to through Component Integration Services (CIS). Before
you can use the Full-Text Search engine, configure Adaptive Server
for a Full-Text Search engine as follows:

• Enable the enable cis and rpc configuration parameters if you have
not done so

• Run the installtextserver script to define one or more Full-Text
Search engines

• Run the installmessages script to install messages for the Full-Text
Search engine’s system procedures

• Run the installevent script to create the text_events table in the user
database

Enabling Configuration Parameters

To connect to the Full-Text Search engine, Adaptive Server must be
running with the enable cis and rpc configuration parameters enabled.
If those parameters are not enabled, log in to Adaptive Server using
isql and use sp_configure to enable them. For example:

exec sp_configure "enable cis", 1
exec sp_configure "rpc", 1

Adaptive Server displays a series of messages stating that you have
altered a configuration parameter and that Adaptive Server must be
rebooted for the new configuration parameters to take effect.

Running the installtextserver Script

The installtextserver script:

3-2 Configuring Adaptive Server for Full-Text Searches

Configuring Adaptive Server for a Full-Text Search Engine Full-Text Search SDS Version 11.9.2

• Defines the Full-Text Search engine as a remote server of server
class sds to Adaptive Server.

• Creates a database for storing text index metadata. For more
information about this database, see “The text_db Database” on
page 2-2.

• Installs the system procedures required by the Full-Text Search
engine.

Run the installtextserver script only once (see “Running the
installtextserver Script” on page 3-3). To add Full-Text Search
engines at a later time, use sp_addserver. See “Configuring Multiple
Full-Text Search Engines” on page 7-5 for more information about
sp_addserver.

All Full-Text Search engines use the same database for storing text
index metadata. This database is referred to in this book as the
text_db database, the default name.

For a list and description of the system procedures added with the
installtextserver script, see Appendix A, “System Procedures.”

Editing the installtextserver Script

The installtextserver script is located in the $SYBASE/sds/text/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and
make your edits. The edits you can make are as follows:

• Changing the name of the text_db database. If you use a different
name, replace all occurrences of text_db with the appropriate
name.

➤ Note
If you change the name of the text_db database, you must change the

name in the defaultDb configuration parameter (see “Modifying the

Configuration Parameters” on page 6-4).

• Changing the name of the Full-Text Search engine. By default, the
installtextserver script defines a Full-Text Search engine named
“textsvr.” If your Full-Text Search engine is named differently,
edit this script so that it defines the correct server name.

• Adding multiple Full-Text Search engines (for information on
how this can enhance performance, see “Configuring Multiple
Full-Text Search Engines” on page 7-5). If you are initially
defining more than one Full-Text Search engine, edit the

Full-Text Search Specialty Data Store User’s Guide 3-3

Full-Text Search SDS Version 11.9.2 Configuring Adaptive Server for a Full-Text Search Engine

installtextserver script so that it includes all the Full-Text Search
engine definitions. installtextserver includes the following section
for naming the Full-Text Search engine you are configuring
(“textsvr” by default):

/*
** Add the text server
*/
exec sp_addserver textsvr,sds,textsvr
go

Add an entry for each Full-Text Search engine you are
configuring. For example, if you are configuring three Full-Text
Search engines named KRAZYKAT, OFFICAPUP, and MOUSE,
replace the default “textsvr” line with the following lines:

exec sp_addserver KRAZYKAT, sds, KRAZYKAT
exec sp_addserver OFFICAPUP, sds, OFFICAPUP
exec sp_addserver MOUSE, sds, MOUSE
go

• If you use OmniConnect to communicate with the Full-Text
Search engine, change the server name specification in the
sp_addobjectdef calls for the vesaux and vesauxcol tables to a valid
remote server. For example, if your remote server is named
REMOTE, change the lines:

exec sp_addobjectdef "vesaux","SYBASE.master.dbo.vesaux","table"
exec sp_addobjectdef "vesauxcol","SYBASE.master.dbo.vesauxcol", "table"

to something similar to:

exec sp_addobjectdef "vesaux","REMOTE.master.dbo.vesaux","table"
exec sp_addobjectdef "vesauxcol","REMOTE.master.dbo.vesauxcol", "table"

Running the installtextserver Script

Use isql to run the installtextserver script. For example, to run the
installtextserver script in an Adaptive Server named MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/sds/text/scripts/installtextserver

Running the installmessages Script

The Full-Text Search engine has its own set of system procedure
messages that you must install in Adaptive Server. Use the
installmessages script to install the messages. You run the installmessages
script only once, even if you have multiple Full-Text Search engines.

3-4 Configuring Adaptive Server for Full-Text Searches

Configuring Adaptive Server for a Full-Text Search Engine Full-Text Search SDS Version 11.9.2

For example, to run the installmessages script in a server named
MYSVR, enter:

isql -Usa -P -SMYSVR -i $SYBASE/sds/text/scripts/installmessages

Running the installevent Script

Each database containing tables referenced by a text index must
contain a text_events table, which logs inserts, updates, and deletes to
indexed columns. It is used to propagate updated data to the Verity
collections.

Run the installevent script, as described below, to create the text_events
table and associated system procedures in a database. Use the
installevent script as follows:

• If all databases require text indexes, run the installevent script to
create a text_events table in the model database. Each newly
created database will then have a text_events table. To add a
text_events table to existing databases, edit the script as described
below to create the text_events table in the existing user database.

• If not all databases have text indexes, use the installevent script as a
sample. For each existing database and each new database that
includes tables that require text indexing, run the installevent
script. You must edit the script as described below, to create the
text_events table in the correct user database.

➤ Note
If a text_events table does not exist in a database that includes source

tables that require text indexing, changes to the source table will not be

propagated to the Verity collections.

Editing the installevent Script

The installevent script is located in the $SYBASE/sds/text/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and
make the edits. The edits you can make are:

• Changing the user database name. The installevent script creates an
events table (named text_events) and associated system
procedures in the model database. The model database is the
default database. To install the text_events table in an existing user

Full-Text Search Specialty Data Store User’s Guide 3-5

Full-Text Search SDS Version 11.9.2 Creating and Maintaining the Text Indexes

database, edit the script and replace all references to model with
the user database name.

• Changing the text_db database name. If your database for storing
text index metadata is named something other than text_db,
replace all references to text_db with the appropriate name.

➤ Note
The name of the text_db database must be the same as the name in the

defaultDb configuration parameter (see “Modifying the Configuration

Parameters” on page 6-4).

Running the installevent Script

➤ Note
The text_db database must exist before you run the installevent script. If it

does not exist, run the installtextserver script first.

Using isql, run the installevent script to install the text_events table and
related system procedures in Adaptive Server. For example, to run
the installevent script in a server named MYSVR, enter:

isql -Usa -P -SMYSVR -i $SYBASE/sds/text/scripts/installevent

Creating and Maintaining the Text Indexes

Before the Full-Text Search engine can process full-text searches, you
must create text indexes for the source tables in the user database.
After the text indexes are created, you must update them when the
source data changes to keep the text indexes current. To create and
maintain the text indexes:

• Set up the source table for indexing (see “Setting Up Source
Tables for Indexing” on page 3-6).

• Create the text indexes and index tables (see “Creating the Text
Index and Index Table” on page 3-7).

• Bring the databases online for full-text searches (see “Bringing
the Database Online for Full-Text Searches” on page 3-9).

• Propagate changes in the user data to the text indexes (see
“Propagating Changes to the Text Index” on page 3-9).

3-6 Configuring Adaptive Server for Full-Text Searches

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 11.9.2

• If you are replicating text indexes, set up text indexing in the
destination database (see “Replicating Text Indexes” on page
3-10).

For an example of setting up a text index, see the sample script
sample_text_main.sql in the $SYBASE/sds/text/sample/scripts directory.

Setting Up Source Tables for Indexing

The source table contains the data on which you perform searches
(for example, the blurbs table in the pubs2 database). For more
information on source tables, see “The Source Table” on page 2-1.

Before you can create text indexes on a source table, you must:

• Verify that the source table has an IDENTITY column

• Create a unique index on the IDENTITY column (optional)

Adding an IDENTITY Column to a Source Table

Every source table must contain an IDENTITY column to uniquely
identify each row and provide a means of joining the index table and
the source table. When you create a text index, the IDENTITY
column is passed with the indexed columns to the Full-Text Search
engine. The IDENTITY column value is stored in the text index and
is mapped to the id column in the index table.

The IDENTITY column must have sufficient precision and scale to
guarantee a unique IDENTITY for each row. Sybase recommends a
precision of 10 and a scale of 0. You can use an existing IDENTITY
column, if it is defined with sufficient precision and scale to identify
each row uniquely.

For example, to create an IDENTITY column in a table named
composers, define the table as follows:

create table composers (
id numeric(10,0) identity,
comp_fname char(30) not null,
comp_lname char(30) not null,
text_col text

)

To add an IDENTITY column to an existing table, enter:

alter table table_name add id numeric(10,0) identity

Full-Text Search Specialty Data Store User’s Guide 3-7

Full-Text Search SDS Version 11.9.2 Creating and Maintaining the Text Indexes

Adding a Unique Index to an IDENTITY Column

For optimum performance, Sybase recommends creating a unique
index on the IDENTITY column. For example, to create a unique
index named comp_id on the IDENTITY column created above, enter:

create unique index comp_id
on composers(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Creating the Text Index and Index Table

Use the sp_create_text_index system procedure to create the text
indexes. sp_create_text_index does the following:

• Updates the vesaux and vesauxcol tables in the text_db database

• Creates the text index (Verity collections)

• Populates the Verity collections

• Creates the index table in the user database where the source
table is located

The text index can contain up to 16 columns. Columns of the
following datatypes can be indexed:

Standard Version Datatypes

char, varchar, nchar, nvarchar, text, image, datetime, smalldatetime

Enhanced Version Datatypes

All Standard version datatypes, plus:

int, smallint, and tinyint

For example, to create a text index and an index table named i_blurbs
for the copy column in the blurbs table in pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ",
"copy"

where:

• KRAZYKAT is the name of the Full-Text Search engine

• i_blurbs is the name of the index table and text index you are
creating

3-8 Configuring Adaptive Server for Full-Text Searches

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 11.9.2

• blurbs is the source table on which you are creating the text
indexes

• " " is a placeholder for text index creation options

• copy is the column in the blurbs table that you are indexing

See “sp_create_text_index” on page A-4 for more information.

➤ Note
Make sure the text_db database name in the configuration file (listed after

the defaultDb parameter) matches the database name in Adaptive Server. If

they do not match, the text index cannot be created. Also, verify that the

text_events table exists in the user database. If it does not exist, run the

installevent script for that database (refer to “Running the installevent Script”

on page 3-4).

Populating the Verity collections can take a few minutes or several
hours, depending on the amount of data you are indexing. You may
want to perform this step when the server is not being heavily used.
Increasing the batch_size configuration parameter will also expedite
the process. See “batch_size” on page 7-4 for more information.

Specifying Multiple Columns When Creating a Text Index

When you create a text index on two or more columns, each column
in the text index is placed into its own document zone. The name of
the zone is the name of the column. For example, to create a text
index and an index table named i_blurbs for both the copy column
and the au_id column in the blurbs table in pubs2 on KRAZYKAT,
enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ",
"copy", "au_id"

sp_create_text_index creates two zones in the text index named “copy”
and “au_id.” When you issue a query against the i_blurbs text index,
the search includes the copy and au_id columns. However, you can
limit your search to a particular column by using the in operator to
specify a document zone (for more information, see “in” on page
5-11).

Full-Text Search Specialty Data Store User’s Guide 3-9

Full-Text Search SDS Version 11.9.2 Creating and Maintaining the Text Indexes

Bringing the Database Online for Full-Text Searches

With the Standard version of Full-Text Search engine, you must
manually bring a database online before issuing full-text queries on
a source table in the database. When you bring a database online, the
Full-Text Search engine initializes the internal Verity structures and
confirms that the Verity collections exist.

➤ Note
With the Enhanced Full-Text Search engine, the database is automatically

brought online when the auto_online configuration parameter is set to 1.

Use the sp_text_online system procedure to bring a database online for
full-text searches if it is not automatically brought online. For
example, to bring the pubs2 database online before issuing full-text
searches on the blurbs table in a Full-Text Search engine named
KRAZYKAT, enter:

sp_text_online KRAZYKAT, pubs2

This message appears:

Database ‘pubs2’ is now online

The pubs2 database is now available for performing full-text
searches.

See “sp_text_online” on page A-31 for more information.

Propagating Changes to the Text Index

When you insert, update, or delete data in your source table, the text
indexes are not updated automatically. After you update data, run
the sp_refresh_text_index system procedure to log the changes to the
text_events table. Then, run the sp_text_notify system procedure to
notify the Full-Text Search engine that changes need to be processed.
The Full-Text Search engine then connects to Adaptive Server, reads
the entries in the text_events table, determines which indexes, tables,
and rows are affected, and updates the appropriate collections.

See “sp_refresh_text_index” on page A-14 and “sp_text_notify” on
page A-30 for more information on these system procedures.

To have sp_refresh_text_index run automatically after each insert,
update, or delete, you can create triggers on your source tables, as
follows:

3-10 Configuring Adaptive Server for Full-Text Searches

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 11.9.2

• Create a trigger that runs sp_refresh_text_index after a delete
operation.

• Create a trigger that runs sp_refresh_text_index after an insert
operation.

• Create a trigger that runs sp_refresh_text_index after an update
operation to an indexed column.

Triggers are not fired when you use writetext to update a text column.
To have sp_refresh_text_index automatically run after a writetext:

• Set up a non-text column and update that column after each
writetext.

• Create a trigger on the non-text column to run sp_refresh_text_index.
Since the Full-Text Search engine reinserts the entire row when
you issue sp_text_notify, the update to the text column gets
propagated to the text index.

For examples of each of these triggers, see the sample script
sample_text_main.sql in the $SYBASE/sds/text/sample/scripts directory.

Replicating Text Indexes

To replicate tables that have text indexes, follow these guidelines:

• Create the table definition in the destination database.

• Run the installevent script to create the text_events table in the
destination database, if the text_events table does not already exist
(see “Running the installevent Script” on page 3-4).

• Run sp_create_text_index to create the text index on the empty table
in the destination database (see “Creating the Text Index and
Index Table” on page 3-7).

• Create triggers for running sp_refresh_text_index to insert entries
into the text_events table whenever you insert, update, or delete
data into the table (see “Propagating Changes to the Text Index”
on page 3-9).

• Create the replication definition in the Replication Server. This
replicates all the data in the source table to the destination table.

• Run sp_text_notify to update the text index; run sp_text_notify
periodically to process changes to the destination table (see
“Propagating Changes to the Text Index” on page 3-9).

Full-Text Search Specialty Data Store User’s Guide 3-11

Full-Text Search SDS Version 11.9.2 Creating and Maintaining the Text Indexes

➤ Note
You must issue an update against a non-text column whenever a writetext
command is performed. This ensures that the trigger that inserts data into

the text_events table is fired.

Example: Enabling a New Database for Text Searches

This example describes the steps for creating a text index on the plot
column of the reviews table in the movies database. This process
assumes that:

• You have created a reviews table in a new database named movies
on the MYSVR server

• The reviews table has a column named plot that you are going to
index

• Adaptive Server and the Full-Text Search engine named
MYTXTSVR have been configured to connect to each other

Step 1. Verify That the text_events Table Exists

Each database containing tables referenced by a text index must
contain a text_events table, which logs inserts, updates, and deletes to
indexed columns.

If a text_events table is in your model database, it will be in all new
databases. If a text_events table is not in your model database, run the
installevent script to install the text_events table in the new database.
For example, to install the text_events table in the movies database:

• Save the installevent script as installeventmovies.

• Edit the script to replace all references to the word model with the
word movies.

• Run the script as follows:

isql -Usa -P -SMYSVR -i
$SYBASE/sds/text/scripts/installeventmovies

See “Running the installevent Script” on page 3-4 for information on
installing the text_events table.

3-12 Configuring Adaptive Server for Full-Text Searches

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 11.9.2

Step 2. Check for an IDENTITY Column

Every source table must contain an IDENTITY column, which
uniquely identifies each row and provides a means of joining the
index table and the source table.

For example, to add an IDENTITY column to the reviews table, enter:

alter table reviews add id numeric(10,0) identity

See “Adding an IDENTITY Column to a Source Table” on page 3-6
for more information on creating an IDENTITY column.

Step 3. Create a Unique Index on the IDENTITY Column

This step is optional. To enhance performance, Sybase recommends
creating a unique index that contains only the IDENTITY column.
For example, to create a unique index named reviews_id on the
IDENTITY column created in step 2, issue the command:

create unique index reviews_id on reviews(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Step 4. Create the Text Index and Index Table

The source tables in the user database need to be indexed so that you
can perform full-text searches. For example, to create a text index and
an index table named reviews_idx for the plot column in the reviews
table, enter:

sp_create_text_index "MYTXTSVR", "reviews_idx", "reviews", " ",
"plot"

The reviews table is now available for running full-text searches.

See “sp_create_text_index” on page A-4 for more information.

Step 5. Bring the Database Online for a Full-Text Search

To bring the movies database online for the Full-Text Search engine
named MYTXTSVR, enter:

sp_text_online MYTXTSVR, movies

Full-Text Search Specialty Data Store User’s Guide 3-13

Full-Text Search SDS Version 11.9.2 Creating and Maintaining the Text Indexes

➤ Note
Omit this step if you have Enhanced Full-Text Search engine and your

auto_online configuration parameter is set to “1”.

See “sp_text_online” on page A-31 for more information.

3-14 Configuring Adaptive Server for Full-Text Searches

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide 4-1

4 Setting Up Verity Functions 4.

This chapter describes the setup required before you can write
queries with certain Verity functionality. It includes:

• Enabling Query-By-Example, Summarization, and Clustering
4-1

• Setting Up a Column to Use As a Sort Specification 4-4

• Using Filters on Text That Contains Tags 4-6

• Creating a Custom Thesaurus (Enhanced Version Only) 4-7

• Creating Topics (Enhanced Version Only) 4-11

Enabling Query-By-Example, Summarization, and Clustering

The style.prm file specifies additional data to include in the text
indexes to support the following functionality:

• Query-by-example – Retrieves documents that are similar to a
phrase (see “like” on page 5-12 for more information).

➤ Note
The text indexes only need additional data to support phrases in the query-

by-example specification of the like operator. If you use a document in the

query-by-example specification, additional data is not required.

• Summarization – returns summaries of documents rather than
entire documents (see “Using the summary Column to
Summarize Documents” on page 5-6 for more information).

• Clustering – groups documents in result sets by subtopic (see
“Using Pseudo Columns to Request Clustered Result Sets” on
page 5-6 for more information). Clustering is available only with
the Enhanced Full-Text Search engine.

You can enable these features for all text indexes by editing the
master style.prm file, or you can enable them for an individual text
index by editing its style.prm file. Both methods are describe below.

Query-By-Example and Clustering

To use phrases in a query-by-example specification and to use
clustering, you must enable the generation of document feature

4-2 Setting Up Verity Functions

Enabling Query-By-Example, Summarization, and Clustering Full-Text Search SDS Version 11.9.2

vectors at indexing time. To do this, uncomment the following line in
the style.prm file:

$define DOC-FEATURES "TF"

Summarization

To configure the Full-Text Search engine for summarization,
uncomment one of the following lines that starts with “#$define” in
the style.prm file:

The example below stores the best three sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 255"

The example below stores the first four sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 255"

The example below stores the first 150 bytes of
the document, with whitespace compressed.
#$define DOC-SUMMARIES "LB MaxBytes 150"

Each of those lines reflects a different level of summarization.
You can specify how many bytes of data you want the Full-Text
Search engine to display, by altering the numbers at the ends of
these lines. For example, if you want only the first 233 bytes of
data summarized, edit the script to read:

$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 233"

The maximum number of bytes displayed is 255. Any number
greater than that is truncated to 255.

Editing the Master style.prm File

The master style.prm file is located in:

$SYBASE/sds/text/verity/common/style

It contains the default Full-Text Search engine style parameters. Edit
this file to configure the Full-Text Search engine so that all tables on
which you create text indexes allow clustering and literal text in your
query-by-example specifications, or summarization. Uncomment
the applicable lines as described above.

Full-Text Search Specialty Data Store User’s Guide 4-3

Full-Text Search SDS Version 11.9.2 Enabling Query-By-Example, Summarization, and Clustering

➤ Note
If you have existing text indexes, you must re-create the text index with

these features enabled as described in “Editing Individual style.prm Files”

below.

Editing Individual style.prm Files

Perform the following steps to configure the Full-Text Search engine
so that the individual text index allows clustering and literal text in
your query-by-example specifications, or summarization:

1. Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.prm file is
created for the text index, but the Verity collections are not
populated with data. For example, if you are enabling clustering
for the copy column of the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs",
"blurbs", "empty", "copy"

➤ Note
If the text index already exists, omit this step. You do not need to create the

text index again.

2. Use sp_drop_text_index to drop the text index associated with the
style.prm file you are editing.

For example, to drop the text index created in step 1, enter:

sp_drop_text_index "blurbs.i_blurbs"

3. Edit the style.prm file that exists for the text index. The style.prm
file for an existing collection is located in:

$SYBASE/sds/text/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and
the index created with sp_create_text_index. For example, if you
create a text index called i_blurbs on the pubs2 database, the full
path to these files is:

$SYBASE/sds/text/collections/pubs2.dbo.i_blurbs/style

4. Uncomment the applicable lines as described above.

4-4 Setting Up Verity Functions

Setting Up a Column to Use As a Sort Specification Full-Text Search SDS Version 11.9.2

For example, to enable clustering, uncomment the following
line:

$define DOC-FEATURES "TF"

5. Re-create the text index you dropped in step 2. For example, to
re-create the i_blurbs text index, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

Setting Up a Column to Use As a Sort Specification

Before you can sort by specific columns, you must modify the
style.vgw and style.ufl files. (For information on including a column in
a sort specification, see “Using the sort_by Column to Specify a Sort
Order” on page 5-4.) Both files are in the directory:

$SYBASE/sds/text/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and the
index created using sp_create_text_index. For example, if you created a
text index called i_blurbs on the pubs2 database, the full path to those
files would be similar to:

$SYBASE/sds/text/collections/pubs2.dbo.i_blurbs/style

To edit the style.vgw and style.ufl files, follow these steps:

1. Drop the text index that contains the columns for which you are
adding definitions.

For example, to add definitions for the copy column in the blurbs
table, use the following command to drop the text index:

sp_drop_text_index i_blurbs

2. Edit the style.vgw file. Following this line:

dda "SybaseTextServer"

add an entry for the column you are defining. The syntax is:

table: DOCUMENTS
{

copy: f column_number copy_ column_number
}

where column_number is the number of the column you are
defining. Column numbers start with 0; if you want the first
column to be sorted, specify “f0”; to sort the second column,
specify “f1”; to sort the third column, specify “f2”, and so on.

For example, to define the first column in a table, the syntax is:

Full-Text Search Specialty Data Store User’s Guide 4-5

Full-Text Search SDS Version 11.9.2 Setting Up a Column to Use As a Sort Specification

table: DOCUMENTS
{

copy: f0 copy_f0
}

Then, your style.vgw file will be similar to this:

#
Sybase Text Server Gateway
#
$control: 1
gateway:
{

dda: "SybaseTextServer"
{

copy: f0 copy_f0
}
}

3. Edit the style.ufl file, by adding the column definition for a data
table named fts. The syntax is:

data-table: fts
{

fixwidth: copy_f column_number precision d atatype
}

Column numbers start with 0; if you want the first column to be
sorted, specify “f0”; to sort the second column, specify “f1”; to
sort the third column, specify “f2”, and so on. For example, to
add a definition for the first column of a table, with a precision of
4, and a datatype of date, enter:

data-table: fts
{

fixwidth: copy_f0 4 date
}

Similarly, to add a definition for the second column of a table
with a precision of 10, and a datatype of character, enter:

data-table: fts
{

fixwidth: copy_f1 10 text
}

4. Re-create the index, using sp_create_text_index.

4-6 Setting Up Verity Functions

Using Filters on Text That Contains Tags Full-Text Search SDS Version 11.9.2

Using Filters on Text That Contains Tags

To perform accurate searches on documents that contain tags (such
as HTML or postscript), the text index must use a filter to strip out
the tags. When you create the text index to use a filter, the data for
each type of tag in the document is placed into its own document
zone.

For example, if you have a tag called “chapter,” all chapter names are
placed into one document zone. You can issue a query that searches
the entire document, or that searches only for data in the “chapter”
zone (for more information, see “in” on page 5-11).

To create a text index that uses a filter, modify the style.dft file for that
text index. To edit the style.dft file, follow these steps:

1. Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.dft file is
created for the text index, but the Verity collections are not
populated with data. For example, to create a text index for the
copy column of the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs",
"blurbs", "empty", "copy"

◆ WARNING!
You should specify only one column in the text index when the text
index uses a filter.

2. Drop the text index that you create in step 1. This drops the text
index, but not the style.dft file. For example, use the following
command to drop the i_blurbs text index:

sp_drop_text_index i_blurbs

3. Edit the style.dft file. The style.dft file is in the directory:

$SYBASE/sds/text/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and
the index created using sp_create_text_index. For example, if you
created a text index called i_blurbs on the pubs2 database, the full
path to the style.dft file would be similar to:

$SYBASE/sds/text/collections/pubs2.dbo.i_blurbs/style

Following this line:

field: f0

Full-Text Search Specialty Data Store User’s Guide 4-7

Full-Text Search SDS Version 11.9.2 Creating a Custom Thesaurus (Enhanced Version Only)

add the following syntax to use a filter:

/filter="universal"

Then, your style.dft file will look like this:

$control: 1
dft:
{

field: f0
/filter="universal"

field: f1
field: f2
.
.
field: f15

{

4. Re-create the index, using sp_create_text_index. For example:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs",
"", "copy"

Creating a Custom Thesaurus (Enhanced Version Only)

The Verity thesaurus operator expands a search to include the
specified word and its synonyms (for information on using the
thesaurus operator, see “thesaurus” on page 5-15). In the Enhanced
version of the Full-Text Search engine, you can create a custom
thesaurus that contains application-specific synonyms to use in place
of the default thesaurus.

For example, the default English language thesaurus contains these
words as synonyms for “money”: “cash,” ”currency,” ”lucre,”
”wampum,” and ”greenbacks.” You can create a custom thesaurus
that contains a different set of synonyms for “money”; for example,
such as: ”bid,” ”tokens,” ”credit,” ”asset,” and ”verbal offer.”

To create a custom thesaurus, follow these steps:

1. Make a list of the synonyms that you will use with your
application. It may help to examine the default thesaurus (see
“Examining the Default Thesaurus (Optional)” on page 4-8).

2. Create a control file that contains the synonyms you are defining
for your custom thesaurus (see “Creating the Control File” on
page 4-9).

4-8 Setting Up Verity Functions

Creating a Custom Thesaurus (Enhanced Version Only) Full-Text Search SDS Version 11.9.2

3. Create the custom thesaurus using the mksyd utility (see
“Creating the Thesaurus” on page 4-10). This uses the control file
as input.

4. Replace the default thesaurus with your custom thesaurus (see
“Replacing the Default Thesaurus with the Custom Thesaurus”
on page 4-10).

For more information on “Custom Thesaurus Support” and the
mksyd utility, see the Verity Web site at:

http://www.verity.com

In the Enhanced version of Full-Text Search engine, two sample files
illustrate how to set up and use a custom thesaurus:

• sample_text_thesaurus.ctl is a sample control file

• sample_text_thesaurus.sql issues queries against the custom
thesaurus defined in the sample control file

These files are in the $SYBASE/sds/text/sample/scripts directory.

Examining the Default Thesaurus (Optional)

A control file contains all the synonym definitions for a thesaurus. To
examine the default thesaurus, create its control file using the mksyd
utility. Use the syntax:

mksyd -dump -syd
$SYBASE/sds/text/verity/common/ vdkLanguage /vdk20.syd -f
work_location / control_file .ctl

where:

• vdkLanguage – is the value of the vdkLanguage configuration
parameter (for example, “english0”)

• work_location – is the directory where you want to place the
control file

• control_file – is the name of the control file you are creating from
the default thesaurus

Examine the control file (control_file.ctl) that it creates to view the
default synonym lists.

Full-Text Search Specialty Data Store User’s Guide 4-9

Full-Text Search SDS Version 11.9.2 Creating a Custom Thesaurus (Enhanced Version Only)

Creating the Control File

Create a control file that contains the new synonyms for your custom
thesaurus. The control file is an ASCII text file in a structured format.
Using a text editor (such as vi or emacs), either:

• Edit the control file from the default thesaurus and add new
synonyms to the existing thesaurus (see “Examining the Default
Thesaurus (Optional)” on page 4-8), or

• Create a new control file that includes only your synonyms

Control File Syntax

The control file contains synonym list definitions in a synonyms:
statement. For example, the following is a control file named
colors.ctl:

$control: 1
synonyms:
{
list: "red, ruby, scarlet, fuchsia,\
magenta"
list: "electric blue <or> azure"
/keys = "lapis"
}
$$

The synonyms: statement includes:

• list: keywords that specify the start of a synonym list. The
synonyms in the list are either in query form or in a list of words
or phrases separated by commas.

• Each list: can optionally have a /keys modifier that specifies one or
more keys separated by commas. In the example above, no keys
are specified in the first “list”. This means the list is found when
the thesaurus is queried for the word “red,” “ruby,” “scarlet,”
“fuchsia,” or “magenta.” The second “list” uses the /keys modifier
to specify one key. This means the words or phrases in the list will
satisfy a query only when you specify <thesaurus>lapis.

4-10 Setting Up Verity Functions

Creating a Custom Thesaurus (Enhanced Version Only) Full-Text Search SDS Version 11.9.2

➤ Note
If you use emacs to build a synonym list and any of your lists go beyond one

line, turn off auto-fill mode. If you separate your list into multiple lines,

include a backslash (\) at the end of each line so that the lines are treated

as one list.

For more complex examples of control files, see the Verity Web site.

Creating the Thesaurus

The mksyd utility creates the custom thesaurus using a control file as
input. It is located in:

$SYBASE/sds/text/verity/bin

Run, or define an alias to run, mksyd from this bin directory. Create
your custom thesaurus in any work directory.

The mksyd syntax for creating a custom thesaurus is:

 mksyd -f control_file. ctl -syd custom_thesaurus. syd

where:

• control_file – is the name of the control file you create in “Creating
the Control File” above

• custom_thesaurus – is the name of the custom thesaurus you are
creating

For example, to execute the mksyd utility reading the sample control
file defined above, and directing output to a work directory, use the
syntax:

mksyd -f /usr/u/sybase/dba/thesaurus/colors.ctl
-syd /usr/u/sybase/dba/thesaurus/custom.syd

Replacing the Default Thesaurus with the Custom Thesaurus

The default thesaurus named vdk20.syd is located in:

$SYBASE/sds/text/verity/common/vdkLanguage

where vdkLanguage is the value of the vdkLanguage configuration
parameter (for example, the English directory is
$SYBASE/sds/text/verity/common/english0). Each application and user
reading from this location at runtime uses this thesaurus. To replace
it with your custom thesaurus, follow these steps:

Full-Text Search Specialty Data Store User’s Guide 4-11

Full-Text Search SDS Version 11.9.2 Creating Topics (Enhanced Version Only)

1. Back up the default thesaurus before replacing it with the
custom thesaurus. For example:

mv /sybase/sds/text/verity/common/english0/vdk20.syd default.syd

2. Replace the vdk20.syd file with your custom thesaurus. For
example:

cp custom.syd /sybase/sds/text/verity/common/english0/vdk20.syd

3. Restart your Full-Text Search engine; no configuration file
changes are required. The thesaurus is read from this location
when the Full-Text Search engine is started, not when a query is
executed.

Queries using the thesaurus operator will now use the custom
thesaurus.

Creating Topics (Enhanced Version Only)

A topic is a grouping of information related to a concept or subject
area. With topic definitions in place, a user can perform searches on
the topic instead of having to write queries with complex syntax.

The user creates topics which can be combinations of words and
phrases, Verity operators and modifiers, and weight values. Then,
any user can query the topic.

Before you create topics, determine your application requirements,
and establish standards for naming conventions and for the location
of the following:

• Outline files – contains the topic definitions. Each topic has its
own outline file.

• Topic set directories – contains the compiled topic. Each topic has
its own topic set directory.

• Knowledge base map file – contains pointers to the topic set
directories.

To implement topics, perform the following steps:

1. Create one or more outline input files to define your topics (see
“Creating an Outline File” on page 4-12)

2. Create and populate a topic set directory, using the mktopics
utility (see “Creating a Topic Set Directory” on page 4-13)

3. Create a knowledge base map, specifying the locations of one or
more topic set directories (see “Creating a Knowledge Base
Map” on page 4-14)

4-12 Setting Up Verity Functions

Creating Topics (Enhanced Version Only) Full-Text Search SDS Version 11.9.2

4. Set the knowledge_base configuration parameter to point to the
location of the knowledge base map (see “Defining the Location
of the Knowledge Base Map” on page 4-14)

5. Execute queries against defined topics.

For more information about outline formats, operator precedence
rules, and the mktopics utility, see the Verity Web site:

http://www.verity.com.

See also the Verity document Search ‘97 Introduction to Topics.

The following sample files illustrate the topics feature:

• sample_text_topics.otl is a sample outline file

• sample_text_topics.kbm is a sample knowledge base map

• sample_text_topics.sql issues queries using defined topics

These files are in the $SYBASE/sds/text/sample/scripts directory.

Creating an Outline File

A topic outline file specifies all the combinations of words and
phrases, Verity operators and modifiers, and weight values that the
search engine uses when you issue a query using the topic. The
outline file is an ASCII text file in a structured format.

For example, the following outline file defines the topic
“saint-bernard”:

$control: 1
saint-bernard <accrue>
*0.80 "Saint Bernard"
*0.80 "St. Bernard"
* "working dogs"
* "large dogs"
* "European breeds"
$$

When you issue a query specifying the topic “saint-bernard”, the
Full-Text Search engine:

• Returns documents that contain one or more of the following
phrases: “Saint Bernard,” “St. Bernard,” “working dogs,” “large
dogs,” and “European breeds”

• Scores documents that contain the phrase “Saint Bernard” or “St.
Bernard” higher than documents that contain the phrase
“working dogs, “large dogs,” or “European breeds”

Full-Text Search Specialty Data Store User’s Guide 4-13

Full-Text Search SDS Version 11.9.2 Creating Topics (Enhanced Version Only)

This example is a very basic topic definition. An outline can
introduce more complex relationships by using:

• Multiple levels of subtopics

• Combinations of Verity operators (this example uses accrue)

• Verity modifiers

For complex examples of outline files, see the Verity Web site.

➤ Note
In Windows NT, you can use the graphical user interface of the Verity

topicEDITOR product to create topic outlines. It is available from Verity. If

you use topicEDITOR, it automatically creates a topic set directory, and you

can go to “Creating a Knowledge Base Map” on page 4-14 to continue

setting up your topics.

Creating a Topic Set Directory

Use the mktopics utility to create and populate a topic set directory. It
is located in:

$SYBASE/sds/text/verity/bin

Run, or define an alias to run, mktopics from this bin directory. You can
create a topic set directory or directories in any work directory.

The mktopics syntax is:

mktopics -outline outline_file. otl -topicset topic_set_directory

where:

• outline_file – is the name of the outline file you create in “Creating
an Outline File” on page 4-12

• topic_set_directory – is the name of the topic set directory you are
creating

For example, to execute the mktopics utility reading the
saint-bernard.otl file defined above, and directing output to a work
directory, use the syntax:

mktopics -outline /usr/u/sybase/topic_outlines/saint-bernard.otl
-topicset /usr/u/sybase/topic_sets/saint-bernard_topic

4-14 Setting Up Verity Functions

Creating Topics (Enhanced Version Only) Full-Text Search SDS Version 11.9.2

Creating a Knowledge Base Map

A knowledge base map specifies the locations of one or more topic
set directories. Create an ASCII knowledge base map file that defines
the fully-qualified directory paths to your topic sets.

For example, the following knowledge base map file illustrates how
you can list multiple knowledge bases in the map. The first entry
identifies the topic set directory created with mktopics above.

$control:
1 kbases:
{
kb:
/kb-path = /usr/u/sybase/topic_sets/saint-bernard_topic
kb:
/kb-path = /usr/u/sybase/topic_sets/another_topic
}

Defining the Location of the Knowledge Base Map

Set the knowledge_base configuration parameter to point to the location
of the knowledge base map. For example:

sp_text_configure KRAZYKAT, 'knowledge_base',
'/usr/u/sybase/topic_sets/sample_text_topics.kbm'

The knowledge_base configuration parameter is static, and you must
restart the Full-Text Search engine for the definition to take effect.

Executing Queries Against Defined Topics

You can now execute queries using the defined topic instead of a
complex query. For example, before you create the “saint-bernard”
topic, you would have to use the following syntax:

...where i.index_any = "<accrue> ([80]Saint
Bernard, [80]St. Bernard, working dogs, large
dogs, European breeds)"

to find documents that:

• Contain one or more of the following phrases: “Saint Bernard,”
“St. Bernard,” “working dogs,” “large dogs,” and “European
breeds”

• Score documents containing the phrase “Saint Bernard” or “St.
Bernard” higher than documents containing the phrase “working
dogs,” “large dogs,” or “European breeds”

Full-Text Search Specialty Data Store User’s Guide 4-15

Full-Text Search SDS Version 11.9.2 Creating Topics (Enhanced Version Only)

After you create the topic “saint-bernard”, you can use this syntax:

...where i.index_any = "<topic>saint-bernard"

or:

...where i.index_any = "saint bernard"

➤ Note
If you enter a word in a query expression, the Full-Text Search engine tries

to match it with a topic name. If you enter a phrase in a query expression,

the Full-Text Search engine replaces spaces with hyphens (-), and then

tries to match it with a topic name. For example, the Full-Text Search engine

matches “saint bernard” with the topic “saint-bernard”.

See the sample_text_topics.sql file for examples of using topics in
queries.

Troubleshooting Topics

If the knowledge_base configuration parameter specifies a knowledge
base map file that does not exist, the Full-Text Search engine will not
be able to start a session with Verity, and the server will not start. If
the map file exists but contains invalid entries, Verity issues warning
messages at start-up time.

4-16 Setting Up Verity Functions

Creating Topics (Enhanced Version Only) Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide 5-1

5 Writing Full-Text Search
Queries 5.

This chapter describes the pseudo columns, search operators, and
modifiers that you can include in a full-text search. Topics include:

• Components of a Full-Text Search Query 5-1

• Pseudo Columns in the Index Table 5-2

• Full-Text Search Operators 5-8

• Operator Modifiers 5-19

Components of a Full-Text Search Query

To write a full-text search query, you enter the search parameters as
part of an Adaptive Server select statement, using the isql utility. Then
the Full-Text Search engine processes the search. The select statement
requires:

• A where clause that assigns a Verity language query to the
index_any pseudo column

• Pseudo columns to further define the parameters of the search
(optional)

• A join between the IDENTITY column from the source table and
the id column from the index table

For example, to return the 10 documents from the copy column of the
blurbs table that have the most occurrences of the word “software,”
enter:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10

Adaptive Server passes the Verity query to the Full-Text Search
engine to process the search. For more information on how Adaptive
Server processes the query, see “How a Full-Text Search Works” on
page 2-6.

5-2 Writing Full-Text Search Queries

Pseudo Columns in the Index Table Full-Text Search SDS Version 11.9.2

Pseudo Columns in the Index Table

Pseudo columns are columns in the index table that define the
parameters of the search and provide access to the results data. (For
more information about index tables, see “The Index Table” on page
2-3.) These columns are valid only in the context of a query; that is,
the information in the columns is valid only for the duration of the
query. If the query that follows contains a different set of parameters,
the pseudo columns contain a different set of values.

Each pseudo column in an index table describes a different search
attribute. For example, if you indicate the score column, the query
displays only the result set that falls within the parameters you
define. For example, the following query displays only the results
that have a score value greater than 90:

index_table_name .score > 90

Other pseudo columns (like highlight) are used to retrieve data
generated by Verity for a particular document. Table 5-1 describes
the pseudo columns that are maintained by the Full-Text Search
engine.

Table 5-1: Full-Text Search engine pseudo columns

Pseudo Column
Name Description Datatype Length

(in Bytes)

cluster_number Enhanced Full-Text Search engine only. Contains the
cluster that the row is part of. Clusters are
numbered starting with 1. You can use the
cluster_number column only in the select clause of a
query.

int 4

cluster_keywords Enhanced Full-Text Search engine only. Contains the
keywords that Verity uses to build the cluster. You
can use cluster_keywords only in the select clause of a
query.

varchar 255

highlight Offsets within the document all words from the
query. You can use highlight only in the select clause
of a query.

text 16

id Uniquely identifies a document within a collection.
Used to join with the IDENTITY column of the
source table. You can use id in the select clause or
where clause of a query.

numeric 6

index_any Provides a Verity language query to the Full-Text
Search engine. You can use index_any only in a where
clause.

varchar 255

Full-Text Search Specialty Data Store User’s Guide 5-3

Full-Text Search SDS Version 11.9.2 Pseudo Columns in the Index Table

The following sections describe the functionality of the pseudo
columns.

Using the score Column to Relevance-Rank Search Results

Relevance ranking is the ability of the Full-Text Search engine to
assign the score parameter a value that indicates how well a
document satisfies the query. The score calculation depends on the
search operator used in the query (for more information, see “Using
the Verity Operators” on page 5-10). The closer the document
satisfies the query, the higher the score value is for that document.

For example, if you search for documents that contain the word
“rain,” a document with 12 occurrences of “rain” receives a higher
score value than a document with 6 occurrences of “rain.”

If you set score to a high value (such as 90) in your query, you limit the
result set to documents that have a score value greater than that
number.

max_docs Limits results to the first n documents, based on the
default sort order. In a clustered result set, limits
results to the first n documents in each cluster. You
can use max_docs only in a where clause.

int 4

score The normalized measure of correlation between
search strings and indexed columns. The score
associated with a specific document has meaning
only in reference to the query used to retrieve the
document. You can use score in a select clause or a
where clause.

int 4

sort_by Specifies the sort order in which to return the result
set.

• The Standard Full-Text Search engine allows a
single sort specification in the sort_by column.

• The Enhanced Full-Text Search engine allows up
to 16 sort specifications in the sort_by column.

You can use sort_by only in a where clause.

varchar 35

summary Selects summarization data. You can use the
summary column only in the select clause of a query.

varchar 255

Table 5-1: Full-Text Search engine pseudo columns (continued)

Pseudo Column
Name Description Datatype Length

(in Bytes)

5-4 Writing Full-Text Search Queries

Pseudo Columns in the Index Table Full-Text Search SDS Version 11.9.2

➤ Note
Verity uses decimals for score values; Sybase uses whole numbers. For

example, if Verity reports a score value of .85, Sybase reports the same

value as 85.

For example, the following query searches for documents that
contain the word “raconteur” or “Paris,” or both, and that have a
score of 90 or greater:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"

score copy
----- --

(0 rows affected)

The query does not find any documents that contain the word
“raconteur” or “Paris” and that have a score greater than 90.
However, if the score value in the query is lowered to 39, you find that
one document in the blurbs table mentions the word “raconteur” or
“Paris”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 39
and t1.index_any = "<accrue>(raconteur, Paris)"

score copy
----- --
40 A chef’s chef and a raconteur’s raconteur, Reginald

Blotchet-Halls calls London his second home. "Th’ palace
. . .

Using the sort_by Column to Specify a Sort Order

The sort order specifies the collating sequence used to order the data
in the result set. The default sort order is set by the sort_order
configuration parameter (for more information, see “Setting the
Default Sort Order” on page 6-9).

Use the sort_by pseudo column to return a result set with a sort order
other than the default. With the Standard Full-Text Search engine,
you can specify a single sort specification in the sort_by pseudo

Full-Text Search Specialty Data Store User’s Guide 5-5

Full-Text Search SDS Version 11.9.2 Pseudo Columns in the Index Table

column. With the Enhanced Full-Text Search engine, you can specify
up to 16 sort specifications in the sort_by pseudo column.

Table 5-2 lists the values for the sort_by pseudo column.

➤ Note
Before you can sort by specific columns, you must modify the style.vgw and

style.ufl files (see “Setting Up a Column to Use As a Sort Specification” on

page 4-4).

For example, the following query sorts the documents by timestamp
in ascending order:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"
and t1.sort_by = “fts_timestamp asc”

Table 5-2: Values for the sort_by pseudo column

Value Description

fts_score desc Returns a result set sorted by score in descending order.

fts_score asc Returns a result set sorted by score in ascending order.

fts_timestamp desc Returns a result set sorted by a timestamp in descending
order.

fts_timestamp asc Returns a result set sorted by a timestamp in ascending
order.

column_name desc Returns a result set sorted according to the descending
order of a column. column_name is the name of the
source table’s column.

column_name asc Returns a result set sorted according to the ascending
order of a column. column_name is the name of the
source table’s column.

fts_cluster asc Returns a clustered result set. Only available with the
Enhanced Full-Text Search engine. (See “Using Pseudo
Columns to Request Clustered Result Sets” on page 5-6
for more information.)

5-6 Writing Full-Text Search Queries

Pseudo Columns in the Index Table Full-Text Search SDS Version 11.9.2

Using the summary Column to Summarize Documents

Use the summary pseudo column to have queries return only
summaries of the documents that meet the search criteria, rather
than returning entire documents. The summary column is not
available by default; you must edit the style.prm file prior to creating
the text index to enable summarization. See “Enabling Query-By-
Example, Summarization, and Clustering” on page 4-1 for
information about enabling the summary column.

For example, the following query returns only summaries of
documents that include the words “Iranian” and “book” (in this
example, the style.prm file is configured to display 255 characters):

select t1.score, t1.summary
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 70
and t1.index_any = "(Iranian <and> book)"

score summary
----- ---
78 They asked me to write about myself and my book, so here

goes: I started a restaurant called “de Gustibus” with two
of my fri

(1 row affected)

The Full-Text Search engine supports summaries of up to 255 bytes.

For additional examples of queries using summarization, see the
sample script sample_text_queries.sql in the
$SYBASE/sds/text/sample/scripts directory.

Using Pseudo Columns to Request Clustered Result Sets

The clustering function analyzes a result set and groups rows into
clusters so that the rows in each cluster are semantically more similar
to each other, on average, than they are to other rows in other
clusters. Ordering rows by subtopics can help you get a sense of the
major subject areas covered in the result set. Clustering is only
available with the Enhanced Full-Text Search Specialty Data Store.

Returning a clustered result set can be significantly slower than
returning a nonclustered result set. If the response time of a query is
critical, use a nonclustered result set.

Full-Text Search Specialty Data Store User’s Guide 5-7

Full-Text Search SDS Version 11.9.2 Pseudo Columns in the Index Table

Preparing to Use Clustering

Before you request a clustered result set, you must build the text
index with the clustering function enabled (see “Enabling Query-By-
Example, Summarization, and Clustering” on page 4-1).

The Verity clustering algorithm attempts to group similar rows
together, based on the values of the following configuration
parameters:

• cluster_style

• cluster_max

• cluster_effort

• cluster_order

Use the sp_text_cluster system procedure to have a query use values
that are different from the default values of these configuration
parameters. (For values and how to set them for a query, see
“sp_text_cluster” on page A-18.)

Writing Queries Requesting a Clustered Result Set

To obtain a clustered result set, specify “fts_cluster asc” as the sort
specification in the sort_by pseudo column of the query. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10
and t1.sort_by = "fts_cluster asc"

Include any of the following pseudo columns in your query to return
additional clustering information:

• cluster_number – contains the number of the cluster the row
belongs to. Clusters are numbered starting with 1.

• cluster_keywords – contains the most common words found in the
cluster. The cluster_keywords column contains a null value for
each row that does not fit into any cluster.

• max_docs – limits the number of rows returned for each cluster. (In
a nonclustered query, the max_docs column limits the total
number of rows that are returned in a result set.)

• score – contains a value of 0 to 10000. The higher the score, the
closer the row is to the cluster center. A score of 0 indicates the

5-8 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

row does not fit into any cluster. (In a nonclustered query, the
score column can contain a value of 0 to 100.)

See the sample script named sample_text_queries.sql in the
$SYBASE/sds/text/sample/scripts directory for examples of SQL
statements using clustering.

Full-Text Search Operators

The special search operators that you use to perform full-text
searches are part of the Verity Search ’97 search engine. Table 5-3
describes the Verity search operators provided by the Full-Text
Search engine.

Table 5-3: Verity search operators

Operator Name Description

accrue Selects documents that contain at least one of the search
elements specified in a query. The more search elements
there are, the higher the score will be.

and Selects documents that contain all the search elements
specified in a query.

complement Returns the complement of the score value (the score value
subtracted from 100).

in Selects documents that contain the search criteria in
the document zone specified.

like Selects documents that are similar to the sample
documents or passages specified in a query.

near Selects documents containing the specified search
elements, where the closer the search terms are to each
other in a document, the higher the document’s score.

near/n Selects documents containing two or more search terms
within n number of words of each other, where n is an
integer up to 1000. The closer the search terms are to each
other in a document, the higher the document’s score.

or Selects documents that contain at least one of the search
elements specified in a query.

paragraph Selects documents that include all the search elements you
specify within the same paragraph.

phrase Selects documents that include a particular phrase. A
phrase is a grouping of two or more words that occur in a
specific order.

Full-Text Search Specialty Data Store User’s Guide 5-9

Full-Text Search SDS Version 11.9.2 Full-Text Search Operators

Considerations When Using Verity Operators

Consider the following when you write full-text search queries:

• You must enclose the operators in angle brackets (<>) in the
query. If they are not enclosed in angle brackets, the Full-Text
Search engine issues error messages similar to the following:

Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0111 (Query Builder): Syntax error in query string near
character 5
Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0114 (Query Builder): Error parsing query: word(tasmanian)
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchNew failed with vdk error (-40).
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchGetInfo failed with vdk error (-11).
score copy
----- --
(0 rows affected) score

product Multiplies the score values for each of the items of the
search criteria.

sentence Selects documents that include all the specified words in
the same sentence.

stem Expands the search to include the specified word and its
variations.

sum Adds the score values for all items in the search criteria.

thesaurus Expands the search to include the specified word and its
synonyms.

topic Specifies that the search term you enter is a topic.

wildcard Matches wildcard characters included in search strings.
Certain characters indicate a wildcard specification
automatically.

word Performs a basic word search, selecting documents that
include one or more instances of the specified word.

yesno Converts all nonzero score values to 100.

Table 5-3: Verity search operators (continued)

Operator Name Description

5-10 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

• You must enclose the Verity language query in single quotes (') or
double quotes ("). The Full-Text Search engine strips off the
outermost quotes before it sends the query to Verity. For example,
when you enter the query:

...where index_any = "'?own'"

the Full-Text Search engine sends the following query to Verity:

'?own'

• Search terms entered in mixed case automatically become case
sensitive. Search terms entered in all uppercase or all lowercase
are not automatically case sensitive. For example, a query on
“Server” finds only the string “Server”. A query on “server” or
“SERVER” finds the strings “Server”, “server”, and “SERVER”.

• You can use alternative syntax for the query expressions shown
in Table 5-4.

When using the alternative syntax, remember that the Full-Text
Search engine strips off the outermost quotes before it sends the
query to Verity. For example, when you enter the query:

...where index_any = "'play'"

the Full-Text Search engine sends the following query to Verity:

'play'

This is the same as:

<MANY><STEM>play

Using the Verity Operators

The following sections describe how to use the Verity operators
shown in Table 5-3 on page 5-8. For complete information on the
syntax for Verity operators, see the Verity Web site at:

http://www.verity.com

Table 5-4: Alternative Verity syntax

Standard Query Expression Alternative Syntax

<MANY><WORD>string "string"

<MANY><STEM>string 'string'

Full-Text Search Specialty Data Store User’s Guide 5-11

Full-Text Search SDS Version 11.9.2 Full-Text Search Operators

accrue

The accrue operator selects documents that contain at least one of the
search items specified in the query. There must be two or more search
elements. Each result is relevance-ranked. For example, the
following query searches for the word “restaurant” or “deli” or both
in the copy column of the blurbs table:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "<accrue>(restaurant, deli)"

and, or

The and and or operators select documents that contain the specified
search elements. Each result is relevance-ranked. The and operator
selects documents that contain all the elements specified in the query.
For example, the following query selects documents that contain
both “Iranian” and “business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <and> business)"

The or operator selects the documents that contain any of the search
elements. For example, if the preceding query is rewritten to use the
or operator, the query selects documents that contain the word
“Iranian” or “business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <or> business)"

complement

The complement operator returns the complement of the score value for
a document; that is, it subtracts the value of score from 100 and
returns the result as the score value for the document.

in

The in operator selects documents that contain the specified search
element in one or more document zones. Document zones are
created for a text index in the following two scenarios:

5-12 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

• When you create an index on two or more columns using
sp_create_text_index, a document zone is created for each column in
the text index (for more information, refer to “Specifying
Multiple Columns When Creating a Text Index” on page 3-8). A
document zone is not created when you create a text index on a
single column. For example, if you specify the au_id and copy
columns of the blurbs table when you create the text index, you
can issue the following query:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "gorilla <in> copy"

This returns rows that contain the word “gorilla” in the copy
column. However, if you specify only the copy column of the
blurbs table when you create the text index, this query does not
return any rows.

• When you create an index that uses a filter, a document zone is
created for each tag in the document (for more information, see
“Using Filters on Text That Contains Tags” on page 4-6). You can
limit your search to a particular tag by specifying the tag name
after the in operator. For example, to search for the word
“automotive” in a “title” tag in an HTML document, specify:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "automotive <in> title"

like

The like operator selects documents that are similar to the
document(s) or passages you provide. The search engine analyzes
the text to find the most important terms to use. If you specify
multiple samples, the search engine selects important terms that are
common across the samples. Each result is relevance-ranked.

The like operator accepts a single operand, called the query-by-
example (QBE) specification. The QBE specification can be either
literal text or document IDs. The document IDs are from the
IDENTITY column in the source table. For example, to select
documents that are similar to the document in the copy column in the
row with an IDENTITY of “2”, enter:

Full-Text Search Specialty Data Store User’s Guide 5-13

Full-Text Search SDS Version 11.9.2 Full-Text Search Operators

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = '<like> ("{2}")'

Before using literal text in the QBE specification, you must
uncomment the following line in the style.prm file:

$define DOC-FEATURES "TF"

For more information, see “Enabling Query-By-Example,
Summarization, and Clustering” on page 4-1.

See the sample script named sample_text_queries.sql in the
$SYBASE/sds/text/sample/scripts directory for examples of SQL
statements using QBE.

near, near/n

The near operator selects documents that contain the items specified
in the query and are near each other (“near” being a relative term).
The documents in which the search words appear closest to each
other receive the highest relevance-ranking.

The near/n operator specifies how far apart the items can be (n has a
maximum value of 1000). The following example selects documents
in which the words “raconteur” and “home” appear within 10 words
of each other:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<near/10>(raconteur, home)"

or

See “and, or” on page 5-11.

phrase

The phrase operator selects documents that contain a particular
phrase (a group of two or more items that occur in a specific order).
Each result is relevance-ranked. The following example selects the
documents that contain the phrase “gorilla’s head”:

5-14 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<phrase>(gorilla’s head)"

paragraph

The paragraph operator selects documents in which the specified
search elements appear in the same paragraph. The closer the words
are to each other in a paragraph, the higher the score the document
receives in relevance-ranking. The following example searches for
documents in which the words “text” and “search” occur within the
same paragraph:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><paragraph>(text, search)"

product

The product operator multiplies the score value for the documents for
each of the search elements. To arrive at a document’s score, the Full-
Text Search engine calculates a score for each search element and
multiplies the scores. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<product>(cat, created)"

The score value for each search element is 78; however, because the
score values for the items are multiplied, the document has a score
value of 61 (.78 x.78 =.61(100) = 61).

sentence

The sentence operator selects documents in which the specified search
elements appear in the same sentence. The closer the words are to
each other in a sentence, the higher the score the document receives
in relevance-ranking. The following example searches for
documents in which the words “tax” and “service” occur within the
same sentence:

Full-Text Search Specialty Data Store User’s Guide 5-15

Full-Text Search SDS Version 11.9.2 Full-Text Search Operators

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><sentence>(tax, service)"

stem

The stem operator searches for documents containing the specified
word and its variations. For example, if you specify the word “cook,”
the Full-Text Search engine produces documents that contain
“cooked,” “cooking,” “cooks,” and so on. To relevance-rank the
result set, include the many modifier in the query (see “Operator
Modifiers” on page 5-19).

The following query uses the stem operator to find documents that
contain variations of the word “create,” that is, words that contain
the word “create” as a stem. Notice that even though the first
document contains a word in which “create” is not a perfect stem
(“creative”), the document is still selected:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 10
and t1.index_any = "<many><stem>create"

score copy
----- --
78 Anne Ringer ran away from the circus as a child. A

university creative writing professor and her family
. . .

78 If Chastity Locksley didn’t exist, this troubled world
would have created her! Not only did she master the mystic

sum

The sum operator totals the score values for each search element, up to
a maximum of 100. To arrive at a document’s score, the Full-Text
Search engine calculates a score for each search element and totals
those scores.

thesaurus

The thesaurus operator searches for documents containing a synonym
for a search element. For example, you might perform a search using
the word “dog,” looking for documents that use any of its synonyms

5-16 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

(“canine,” “pooch,” “pup,” “watchdog,” and so on). Each result is
relevance-ranked.

The Full-Text Search engine supplies a default thesaurus. With the
Enhanced Full-Text Search engine, you can create a custom
thesaurus. For more information, see “Creating a Custom Thesaurus
(Enhanced Version Only)” on page 4-7.

The following example uses the thesaurus operator to find a result set
that contains synonyms for the word “crave.” The first document is
selected because it contains the word “want”; the second, because it
contains the word “hunger”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<thesaurus>(crave)"

score copy
----- ---
78 They asked me to write about myself and my book, so here

goes: I started a restaurant called “de Gustibus” with two
. . .
of restaurant over another, when what they really want is a
. . .

78 A chef’s chef and a raconteur’s raconteur, Reginald
Blotchet-Halls calls London his second home. "Th’ palace
. . .
his equal skill in satisfying our perpetual hunger for
. . .

topic (Enhanced Version Only)

The topic operator selects documents that meet the search criteria
defined by the specified topic. For more information, see “Creating
Topics (Enhanced Version Only)” on page 4-11. For example, use the
following syntax to find documents that meet the criteria defined by
the topic “engineering”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<topic>(engineering)"

Full-Text Search Specialty Data Store User’s Guide 5-17

Full-Text Search SDS Version 11.9.2 Full-Text Search Operators

wildcard

The wildcard operator allows you to substitute wildcard characters for
part of the item for which you are searching. Table 5-5 describes the
wildcard characters and their attributes.

To relevance-rank the result set, include the many modifier in the
query (see “Operator Modifiers” on page 5-19).

For example, the following query searches for documents that
include variations of the word “slingshot”:

Table 5-5: Full-Text Search engine wildcard characters

Character Function Syntax Locates

? Specifies one alphanumeric character. You do not
need to include the wildcard operator when you
include the question mark in your query. The
question mark is ignored in a set ([]) or in an
alternative pattern ({}).

'?an' “ran,” “pan,”
“can,” and
“ban”

* Specifies zero or more of any alphanumeric
character. You do not need to include the wildcard
operator when you include the asterisk in your
query; you should not use the asterisk to specify
the first character of a wildcard-character string.
The asterisk is ignored in a set ([]) or in an
alternative pattern ({}).

'corp*' “corporate,”
“corporation,”
“corporal,” and
“corpulent”

[] Specifies any single character in a set. If a word
includes a set, you must enclose the word in
backquotes (‘‘). Also, there can be no spaces in a
set.

<wildcard> ‘c[auo]t‘ “cat,” “cut,”
and “cot”

{} Specifies one of each pattern separated by a
comma. If a word includes a pattern, you must
enclose the word in backquotes (‘‘). Also, there
can be no spaces in a set.

<wildcard>
‘bank{s,er,ing}‘

“banks,”
“banker,” and
“banking”

^ Specifies one of any character not included in a
set. The caret (^) must be the first character after
the left bracket ([) that introduces a set.

<wildcard>
‘st[^oa]ck‘

Excludes
“stock” and
“stack,” but
locates “stick”
and “stuck”

- Specifies a range of characters in a set. <wildcard> ‘c[a-r]t‘ Includes every
three-letter
word from
“cat” to “crt”

5-18 Writing Full-Text Search Queries

Full-Text Search Operators Full-Text Search SDS Version 11.9.2

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = '"slingshot*"'

score copy
----- ---
100 Albert Ringer was born in a trunk to circus parents, but

another kind of circus trunk played a more important role
. . .
gorilla. “Slingshotting” himself from the ring ropes,
. . .

word

The word operator searches for documents containing the specified
word. To relevance-rank the result set, include the many operator in
the query. The following example searches the blurbs table for
documents containing the word “palates”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><word>(palates)"

yesno

The yesno operator converts all nonzero score values to 100. For
example, if the score values for five documents are 86, 45, 89, 89, and
100, each of those documents is returned with a score value of 100.
score values of 0 are not changed. The yesno operator is helpful for
ensuring that all documents containing the search criteria are
returned in the result set, regardless of the sort order.

Full-Text Search Specialty Data Store User’s Guide 5-19

Full-Text Search SDS Version 11.9.2 Operator Modifiers

Operator Modifiers

The Verity query language includes modifiers that you can use with
the operators to refine a search. The modifiers are described in Table
5-6.

Table 5-6: Verity operator modifiers

Modifier
Name Description Works with

These Operators Example

case Performs case-sensitive
searches. If you enter
search terms in mixed
case, the search is
automatically case
sensitive.

wildcard
word

<case><word>(Net)

many Counts the number of
times that a word,
stemmed word, or phrase
occurs in a document.
Relevance-ranks the
document according to
its density.

paragraph
phrase
sentence
stem
word
wildcard

<many><stem>(write)

not Excludes documents that
contain the items for
which the query is
searching.

and
or

cat<and><not>elephant

order Specifies that the items in
the documents occur in
the same order in which
they appear in the query.

Always place the order
modifier just before the
operator

near/n
paragraph
sentence

Simple syntax:
tidbits<order><paragraph>king

Explicit syntax:
<order><paragraph>(tidbits,king)

5-20 Writing Full-Text Search Queries

Operator Modifiers Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide 6-1

6 System Administration 6.

This chapter describes system administration issues for both the
Standard and Enhanced versions of the Full-Text Search engine.
Topics include:

• Starting the Full-Text Search Engine on UNIX 6-1

• Starting the Full-Text Search Engine on Windows NT 6-2

• Shutting Down the Full-Text Search Engine 6-4

• Modifying the Configuration Parameters 6-4

• Backup and Recovery for the Standard Full-Text Search Engine
6-13

• Backup and Recovery for the Enhanced Full-Text Search Engine
6-16

Starting the Full-Text Search Engine on UNIX

Use the startserver utility to start the Full-Text Search engine on UNIX.
The startserver utility is included in the bin directory of Adaptive
Server. For example, to start a Full-Text Search engine named
KRAZYKAT, enter:

startserver -f $SYBASE/install/RUN_KRAZYKAT

where the -f flag specifies the relative path to the runserver file. After
you issue the command, the Full-Text Search engine issues a series of
messages describing the settings of the configuration parameters.

Creating the Runserver File

The runserver file contains start-up commands for the Full-Text
Search engine. The runserver file can include the flags shown in
Table 6-1.

Table 6-1: Definition of flags in the runserver file

Flag Definition

-Sserver_name Specifies the name of the Full-Text Search engine and is
used to locate the configuration file and the network
connection information in the interfaces file.

6-2 System Administration

Starting the Full-Text Search Engine on Windows NT Full-Text Search SDS Version 11.9.2

A sample runserver file is copied to the $SYBASE/install directory
during installation. Make a copy of this file, renaming it
RUN_server_name, where server_name is the name of the Full-Text
Search engine. You must include the LD_LIBRARY_PATH
environment variable in the runserver file. For example, the
runserver file for a Full-Text Search engine named KRAZYKAT
would be RUN_KRAZYKAT and would be similar to:

#!/bin/sh
#
SYBASE=$SYBASE/sds/text
export SYBASE

LD_LIBRARY_PATH="$SYBASE/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH

$SYBASE/bin/txtsvr -SKRAZYKAT

The start-up command in the runserver file must consist of a single
line and cannot include a return. If you have to carry the contents of
the file over to a second or third line, include a backslash (\) for a line
break.

Starting the Full-Text Search Engine on Windows NT

You can start the Full-Text Search engine from Sybase Central, as a
service, or from the command line:

• From Sybase Central – see your Sybase Central documentation
for information about starting servers.

• As a service – see “Starting the Full-Text Search Engine As a
Service” on page 6-3.

• From the command line – use the following syntax:

%SYBASE%\sds\text\bin\txtsvr.exe -S server_name
[-t] [-i%SYBASE% path_to_sql.ini_file]
[-l%SYBASE%path_to_errorlog]

-t Causes the Full-Text Search engine to write start-up
messages to standard error.

-lerrorlog_path Specifies the path to the error log file.

-iinterfaces_file_path Specifies the path to the interfaces file.

Table 6-1: Definition of flags in the runserver file

Flag Definition

Full-Text Search Specialty Data Store User’s Guide 6-3

Full-Text Search SDS Version 11.9.2 Starting the Full-Text Search Engine on Windows NT

where:

- -S is the name of the Full-Text Search engine you are starting

- -t directs start-up messages to standard error

- -i is the path to the sql.ini file

- -l is the path to the error log

For example, to start a Full-Text Search engine named KRAZYKAT
using the default sql.ini and error log files, and using -t to trace start-
up messages, enter:

%SYBASE%\sds\text\bin\txtsvr.exe -SKRAZYKAT -t

The Full-Text Search engine is up and running when you see the
start-up complete message.

Starting the Full-Text Search Engine As a Service

Use the instsvr utility in Sybase Central to add the Full-Text Search
engine to the list of items you can start and stop with the Services
utility. instsvr is located in the %SYBASE%\sds\text\bin directory.

The instsvr utility uses the following syntax:

instsvr.exe service_name %SYBASE%\sds\text\bin\txtsvr.exe
"startup_parameters"

where:

• service_name is the name of the Full-Text Search engine you are
adding as a service. With Sybase Central, Sybase recommends
you use a server name with the extension “_TS” (for example,
KRAZYKAT_TS).

• startup_parameters are any parameters you want used at start-up.

For example, to install a Full-Text Search engine named
KRAZYKAT_TS as a service, enter:

instsvr.exe KRAZYKAT_TS %SYBASE%\sds\text\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

➤ Note
If you need to include more than one parameter (for example, -i), you must

include all the parameters in one set of double quotes.

To configure Sybase Central to start and stop your Full-Text Search
engine, you must provide a service name that begins with

6-4 System Administration

Shutting Down the Full-Text Search Engine Full-Text Search SDS Version 11.9.2

“SYBTXT_server_name”, where server_name is the name of the Full-
Text Search engine listed in the interfaces file. For example, if the
name in the interfaces file is KRAZYKAT_TS, run the following
instsvr command to create a service that can be managed by Sybase
Central:

instsvr SYBTXT_KRAZYKAT_TS %SYBASE%\sds\text\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

Shutting Down the Full-Text Search Engine

Use the following command to shut down the Full-Text Search
engine from Adaptive Server:

server_name ...sp_shutdown

where server_name is the name of the Full-Text Search engine you are
shutting down.

For example, to shutdown a Full-Text Search engine named
KRAZYKAT, enter:

KRAZYKAT...sp_shutdown

Modifying the Configuration Parameters

Each Full-Text Search engine has configuration parameters with
default values, as shown in Table 6-2.

Table 6-2: Configuration parameters

Parameter Description Default Value

batch_size Determines the size of the batches
sent to the Full-Text Search engine.

500

max_indexes The maximum number of text
indexes that will be created in the
Full-Text Search engine.

126

max_stacksize Size (in kilobytes) of the stack
allocated for client threads.

34,816

max_threads Maximum number of threads
available for the Full-Text Search
engine.

50

max_packetsize Packet size sent between the Full-
Text Search engine and the Adaptive
Server.

2048

Full-Text Search Specialty Data Store User’s Guide 6-5

Full-Text Search SDS Version 11.9.2 Modifying the Configuration Parameters

max_sessions Maximum number of sessions for
the Full-Text Search engine.

100

min_sessions Minimum number of sessions for the
Full-Text Search engine.

10

language Language used by the Full-Text
Search engine.

us_english

charset Character set used by the Full-Text
Search engine.

iso_1

vdkCharset Character set used by Verity Search
‘97.

850

vdkLanguage Language used by Verity Search
‘97.

english0

vdkHome Verity directory. UNIX:
$SYBASE/sds/text/verity
Windows NT:
%SYBASE%\sds\text\verity

collDir Storage location of the Full-Text
Search engine’s collection.

UNIX:
$SYBASE/sds/text/collections
Windows NT:
%SYBASE%\sds\text\collections

default_Db Name of the Full-Text Search engine
database that stores text index
metadata.

text_db

interfaces Full path to the directory in which
the interfaces file used by the Full-
Text Search engine is located.

UNIX:
$SYBASE/interfaces
Windows NT:
%SYBASE%\ini\sql.ini

sort_order Default sort order. 0

errorLog Full path name to the error log file. The directory in which you start
Full-Text Search engine

traceflags String containing numeric identifiers
used to generate diagnostic
information.

0

srv_traceflags String containing numeric flag
identifiers used to generate Open
Server diagnostic information.

0

Table 6-2: Configuration parameters (continued)

Parameter Description Default Value

6-6 System Administration

Modifying the Configuration Parameters Full-Text Search SDS Version 11.9.2

The Enhanced Full-Text Search engine has additional configuration
parameters as shown in Table 6-3:

A sample configuration file that includes all of these parameters is
copied to your installation directory during installation. The sample
configuration file is named textsvr.cfg. The entire sample
configuration file is listed in Appendix B, “Sample Files.”

Modifying Values in the Standard Version

With Standard Full-Text Search Specialty Data Store, you use a
configuration file to change the default values. The configuration file

Table 6-3: Configuration parameters for Enhanced version only

Parameter Description Default Value

cluster_style Clustering style to use. Fixed

cluster_max Maximum number of clusters to
generate when cluster_style is set to
Fixed.

0

cluster_effort Amount of effort the Full-Text
Search engine should expend on
finding a good cluster.

Default

cluster_order The order to return clusters and
rows within a cluster.

0

auto_online Specifies whether to bring indexes
online automatically when the Full-
Text Search engine is started. 0
indicates online is not automatic; 1
indicates automatic.

0

backDir The default location for the
placement of text index backup files.

UNIX:
$SYBASE/sds/text/backup
Windows NT:
%SYBASE%\sds\text\backup

knowledge_base The location of a knowledge base
map for implementing the Verity
topics feature.

null

nocase Sets the case-sensitivity of the Full-
Text Search engine. If you are using a
case-sensitive sort order in
Adaptive Server, set to 0. If you are
using a case-insensitive sort order,
set to 1.

0

Full-Text Search Specialty Data Store User’s Guide 6-7

Full-Text Search SDS Version 11.9.2 Modifying the Configuration Parameters

is named server_name.cfg and is in the $SYBASE directory.
server_name is the name of the Full-Text Search engine.

• For UNIX, the srvbuild utility creates the configuration file when it
builds the Full-Text Search engine.

• For Windows NT, you manually create the configuration file by
copying a sample configuration file with default values.

To modify the default values, use a text editor to edit the
configuration file. Uncomment the line that contains the
configuration parameter you are modifying. You must restart the
Full-Text Search engine for the new values to take effect.

Modifying Values in the Enhanced Version

With Enhanced Full-Text Search Specialty Data Store, you can use the
sp_text_configure system procedure to change the value of a
configuration parameter. The syntax is:

sp_text_configure server_name , config_name ,
config_value

where:

• server_name is the name of the Full-Text Search engine

• config_name is the name of the configuration parameter

• config_value is the value you assign to the configuration
parameter

For more information, see “sp_text_configure” on page A-21.

➤ Note
You can also modify the value of a configuration parameter by editing a

configuration file as described in above.

Setting the Default Language

The default language for Verity is set with the vdkLanguage
configuration parameter. By default, vdkLanguage is set to “english0”.

6-8 System Administration

Modifying the Configuration Parameters Full-Text Search SDS Version 11.9.2

You can configure Verity to use a different default language. Table 6-
4 lists the locales supported by Sybase.

Additional language adapters are available in the
$SYBASE/sds/text/verity/common directory; however, the Full-Text
Search engine displays messages only in the languages shown in
Table 6-4.

The language parameter is the language the Full-Text Search engine
displays its error messages and Open Server and Open Client error
messages. Set the language parameter to the Adaptive Server
language.

For example, with the Standard Full-Text Search engine, to change
the Verity language to Spanish in a server named KRAZYKAT,
include the following line in the configuration file:

vdkLanguage = spanish0

With the Enhanced Full-Text Search engine, run the following:

sp_text_configure KRAZYKAT, 'vdkLanguage', 'spanish0'

For more information about the Verity languages, see the Verity Web
site:

http://www.verity.com

Setting the Default Character Set

The default character set for Verity is set with the vdkCharset
parameter in the configuration file. The files used for the Verity

Table 6-4: vdkLanguage configuration parameters

Language Default Locale Name

English english0

German german0

French french0

Full-Text Search Specialty Data Store User’s Guide 6-9

Full-Text Search SDS Version 11.9.2 Modifying the Configuration Parameters

character sets are in $SYBASE/sds/text/verity/common. Table 6-5
describes the character sets you can use with Verity.

The default character set for the Full-Text Search engine is set with
the charset parameter. Set the charset parameter to the Adaptive Server
character set.

For example, with the Standard Full-Text Search engine, to change
the Verity character set to IBM PC in a server named KRAZYKAT,
include the following line in the configuration file:

vdkCharset = 437

With the Enhanced Full-Text Search engine, run the following:

sp_text_configure KRAZYKAT, 'vdkCharset', '437'

For more information about the Verity character sets, see the Verity
Web site:

http://www.verity.com

Setting the Default Sort Order

By default, the Full-Text Search engine sorts the result set by the score
pseudo column in descending order (the higher scores appear first).
To change the default sort order, set the sort_order configuration
parameter to one of the values in Table 6-6.

Table 6-5: Verity character sets

Character Set Description

850 Default

437 IBM PC character set

1252 Windows code page for Western
European languages

mac1 Macintosh roman

Table 6-6: Sort order values for the configuration file

Value Description

0 Returns result sets sorted by the score pseudo column in
descending order. The default value.

1 Returns result sets sorted by the score pseudo column in
ascending order.

6-10 System Administration

Modifying the Configuration Parameters Full-Text Search SDS Version 11.9.2

For example, with the Standard Full-Text Search engine, to change
the default sort order to sort by descending timestamp in a server
named KRAZYKAT, include the following line in the configuration
file:

sort_order = 2

With the Enhanced Full-Text Search engine, enter:

sp_text_configure KRAZYKAT, 'sort_order', '2'

When you sort a result set by descending timestamp (value 2 in Table
6-6), the Full-Text Search engine returns the newest documents first.
The newest documents are those that were inserted or updated most
recently. When results are sorted by ascending timestamp (value 3 in
Table 6-6), the Full-Text Search engine returns the oldest documents
first.

Setting the default sort order is especially important if your query
uses the max_docs pseudo column. The max_docs pseudo column
limits the number of rows of the result set to the first n rows, ordered
by the sort order. If you set max_docs to a number smaller than the
size of the result set, the sort order you select could exclude the rows
that contain the information for which you are searching.

For example, if you sort by ascending timestamp, the latest
document added to the table appears last in the result set. If the
entire result set consists of 11 documents, and you set max_docs to 10,
the latest document does not appear in the result set. However, if you
sort by descending timestamp, the latest document appears first in
the result set.

Setting Trace Flags

The traceflags parameter enable the logging of certain events when
they occur within the Full-Text Search engine. Each trace flag is

2 Returns result sets sorted by a timestamp in descending
order.

3 Returns result sets sorted by a timestamp in ascending
order.

Table 6-6: Sort order values for the configuration file (continued)

Value Description

Full-Text Search Specialty Data Store User’s Guide 6-11

Full-Text Search SDS Version 11.9.2 Modifying the Configuration Parameters

uniquely identified by a number. Trace flags are described in Table 6-
7.

You can enable and disable trace flags interactively, using the remote
procedure calls (RPCs) sp_traceon and sp_traceoff in the Full-Text
Search engine. For more information on these RPCs, see the Adaptive
Server Reference Manual.

Table 6-7: Full-Text Search engine trace flags

Trace
Flag Description

1 Traces connects, disconnects, and attention events from
Adaptive Server.

2 Traces language events. Traces the SQL statement that
Adaptive Server sent to the Full-Text Search engine.

3 Traces RPC events.

4 Traces cursor events. Traces the SQL statement sent to
the Full-Text Search engine by Adaptive Server.

5 Writes the errors that display to the log.

6 Traces information about text indexes. Writes the search
string being passed to Verity to the log, and writes the
number of records that the search returns to the log.

7 Traces done packets.

8 Traces calls to the interface between the Full-Text Search
engine and the Verity API.

9 Traces SQL parsing.

10 Traces Verity processing.

11 Disables Verity collection optimization.

12 Disables sp_statistics from returning information.

13 Traces backup operations. Available only with Enhanced
Full-Text Search Specialty Data Store.

14 Logs Verity status and timing information.

15 Generates ngram index information for collections.
ngrams increase the speed of wildcard searches. This
trace flag is required for wildcard searches against data
in unicode format.

6-12 System Administration

Modifying the Configuration Parameters Full-Text Search SDS Version 11.9.2

Setting Open Server Trace Flags

Use the srv_traceflags parameter to turn on trace flags to log Open
Server diagnostic information. Open Server trace flags are described
in Table 6-8.

For example, with the Standard Full-Text Search engine, to trace
attention events on the server named KRAZYKAT, include the
following line in the configuration file:

srv_traceflags = 3

With the Enhanced Full-Text Search engine, run the following:

sp_text_configure KRAZYKAT, 'srv_traceflags', '3'

Setting Case Sensitivity

By default, the Full-Text Search engine is case sensitive. This means
you must enter identifiers in the same case or they are not
recognized. For example, if you have a table named blurbs
(lowercase), you cannot issue an sp_create_text_index command that
specifies the table name BLURBS. You must issue a command that
uses the same case for the table name argument:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

With Enhanced Full-Text Search engine, use the nocase parameter to
set the case sensitivity of the Full-Text Search engine. 0 indicates case

Table 6-8: Open Server trace flags

Trace
Flag Description

1 Traces TDS headers.

2 Traces TDS data.

3 Traces attention events.

4 Traces message queues.

5 Traces TDS tokens.

6 Traces Open Server events.

7 Traces deferred event queues.

8 Traces network requests.

Full-Text Search Specialty Data Store User’s Guide 6-13

Full-Text Search SDS Version 11.9.2 Backup and Recovery for the Standard Full-Text Search Engine

sensitive; 1 indicates case insensitive. Set the nocase parameter to the
sort order case sensitivity in Adaptive Server.

For example:

sp_text_configure KRAZYKAT, 'nocase', '1'

changes the KRAZYKAT server to case insensitive.

➤ Note
The nocase parameter does not affect the case sensitivity of the Verity

query. For information on Verity case sensitivity, see “Considerations When

Using Verity Operators” on page 5-9.

Backup and Recovery for the Standard Full-Text Search Engine

The Adaptive Server user database and the Verity collections are
physically separate. Backing up your user database does not back up
the Verity collections, and restoring your database from a backup
does not restore your Verity collections. The backup and recovery
procedures described in Chapter 21, “Backing Up and Restoring
User Databases,” of the System Administration Guide apply only to the
user database and text_db database in Adaptive Server.

Make sure you follow the recommended schedule for backing up
your databases that is described in Chapter 20, “Developing a
Backup and Recovery Plan,” of the System Administration Guide.
Sybase recommends that when you back up a user database with text
indexes, you also back up:

• The text_db database

• The text indexes

A regular backup schedule ensures the integrity of the text indexes,
the Adaptive Server data, and the text_events table, all of which are
integral to recovering your text indexes without having to drop and
re-create them.

6-14 System Administration

Backup and Recovery for the Standard Full-Text Search Engine Full-Text Search SDS Version 11.9.2

➤ Note
You do not have to back up the user database and text indexes at the same

time to recover the text indexes. However, you must restore the user

database before you restore the text index. Doing so restores the

text_events table, which the sp_redo_text_events system procedure uses to

bring the text indexes in sync with the user database.

If you have Enhanced Full-Text Search Specialty Data Store, use the
automated process described in “Backup and Recovery for the
Enhanced Full-Text Search Engine” on page 6-16.

Backing Up Verity Collections

Follow these steps to back up your Verity collections:

1. Shut down the Full-Text Search engine:

server_name ...sp_shutdown

2. Back up the files. By default, the collections are located in:

$SYBASE/sds/text/collections

Each collection name consists of the database name, owner
name, and index name in the format db.owner.index. For example,
if you create a text index called i_blurbs on the pubs2 database,
the full path to those files would be similar to:

$SYBASE/sds/text/collections/pubs2.dbo.i_blurbs

- In UNIX, back up the files by using the tar or cpio utility

- In Windows NT, use a compression utility such as PKZIP to
back up the files

3. For future reference, make a note of the time of the backup in a
permanent location.

4. Back up the user database and the text_db database, using the
dump database command. For more information on the dump
database command, see the Adaptive Server Reference Manual.

5. Restart the Full-Text Search engine. For instructions, see
“Starting the Full-Text Search Engine on UNIX” on page 6-1 or
“Starting the Full-Text Search Engine on Windows NT” on page
6-2.

Full-Text Search Specialty Data Store User’s Guide 6-15

Full-Text Search SDS Version 11.9.2 Backup and Recovery for the Standard Full-Text Search Engine

Restoring Verity Collections and Text Indexes from Backup

As Database Administrator, follow these steps to restore your Verity
collections:

1. Restore the Adaptive Server user database and text_db database.
This returns the source tables, metadata, and text_events table to
a consistent and predictable state. See Chapter 21, “Backing Up
and Restoring User Databases,” in the System Administration
Guide for more information.

2. Shut down the Full-Text Search engine:

server_name ...sp_shutdown

3. Restore your collections from the backup files created in step 2 in
“Backing Up Verity Collections” on page 6-14.

4. Restart the Full-Text Search engine. For instructions, see
“Starting the Full-Text Search Engine on UNIX” on page 6-1 or
“Starting the Full-Text Search Engine on Windows NT” on page
6-2.

5. Log in to Adaptive Server, and run the sp_redo_text_events system
procedure in the restored database. For example, if you are
restoring the pubs2 database, you have to be in that database to
run the system procedure, sp_redo_text_events, as follows:

sp_redo_text_events " from_date"

where from_date is the date and time associated with the backup
used to recover the collections.

For example:

sp_redo_text_events "10/31/97:16:45"

restores the collections up to October 31, 1997 at 4:45 PM. For
more information, see “sp_redo_text_events” on page A-12.

6. Run the sp_text_notify system procedure to notify the Full-Text
Search engine that changes need to be propagated to the Verity
collections. The Full-Text Search engine connects to Adaptive
Server, reads all the unprocessed entries in the text_events table
and applies them to the text index. For more information, see
“sp_text_notify” on page A-30.

Your text indexes and collections are now fully restored.

6-16 System Administration

Backup and Recovery for the Enhanced Full-Text Search Engine Full-Text Search SDS Version 11.9.2

Backup and Recovery for the Enhanced Full-Text Search Engine

Backup and recovery for the Enhanced Full-Text Search Specialty
Data Store is automated with the sp_text_dump_database and
sp_text_load_index system procedures. These system procedures
provide a seamless interface for maintaining data and text index
integrity.

The Adaptive Server user database and the Verity collections are
physically separate. Backing up your user database does not back up
the Verity collections, and restoring your database from a backup
does not restore your Verity collections. The backup and recovery
procedures described in Chapter 21, “Backing Up and Restoring
User Databases,” of the System Administration Guide apply only to the
user database and the text_db database in Adaptive Server.

Follow the recommended schedule for backing up your databases, as
described in Chapter 20, “Developing a Backup and Recovery Plan,”
of the System Administration Guide. Sybase recommends that when
you back up a user database with text indexes, you also back up:

• The text_db database

• The text indexes

➤ Note
You do not have to back up the user database and text indexes at the same

time to recover the text indexes. However, you must restore the user

database before you restore the text index. This restores the text_events
table, which the sp_text_load_index system procedure uses to bring the text

indexes in sync with the user database.

A regular backup schedule ensures the integrity of the text indexes,
the Adaptive Server data, and the text_events table, all of which are
integral to recovering your text indexes without having to drop and
re-create them.

If you have the Standard Full-Text Search Specialty Data Store, use
the automated process described in “Backup and Recovery for the
Standard Full-Text Search Engine” on page 6-13.

Backing Up Verity Collections

The sp_text_dump_database system procedure backs up collections and
(optionally) the user and text_db databases. sp_text_dump_database also

Full-Text Search Specialty Data Store User’s Guide 6-17

Full-Text Search SDS Version 11.9.2 Backup and Recovery for the Enhanced Full-Text Search Engine

maintains the text_events table by deleting entries that are no longer
needed for recovery. It is available only with the Enhanced Full-Text
Search engine.

During a backup, the Full-Text Search engine processes queries, but
defers any update requests until the backup is complete. This
eliminates the need to shut down and restart the Full-Text Search
engine.

Run sp_text_dump_database from the database containing the text
indexes you are backing up. The backup of the text indexes is placed
in the directory specified in the backDir configuration parameter. The
output of the dump database command is written to the Full-Text
Search error log. Sybase recommends dumping the current database
and the text_db database at the time the text indexes are backed up.
However, this is optional.

For example, to back up the text indexes, the sample_colors_db
database to the /work2/sybase/colorsbackup directory, and the text_db
database to the /work2/sybase/textdbbackup directory, enter:

sp_text_dump_database @backupdbs =
INDEXES_AND_DATABASES, @current_to = "to
'/work2/sybase/colorsbackup'", @textdb_to="to
'/work2/sybase/textdbbackkup'"

➤ Note
It is important to back up the text_db database whenever text indexes are

backed up, since that database contains the metadata for all text indexes.

For more information, see “sp_text_dump_database” on page A-23.

Restoring Collections and Text Indexes from Backup

The sp_text_load_index system procedure restores text indexes that
have been backed up with the sp_text_dump_database system
procedure.

As Database Administrator, perform the following procedures to
restore your Verity collections:

1. Restore your Adaptive Server user database and text_db
database. This returns the source tables, metadata, and
text_events table to a consistent and predictable state. Follow the
procedures described in Chapter 21, “Backing Up and Restoring

6-18 System Administration

Backup and Recovery for the Enhanced Full-Text Search Engine Full-Text Search SDS Version 11.9.2

User Databases,” in the System Administration Guide, to restore
user and text_db databases.

2. Run sp_text_load_index to restore the Verity collection from the
most recent index dump. The procedure resets the status of all
text_events table entries made since the last index dump to
“unprocessed” and notifies the Full-Text Search engine to
process those events.

Example:

To restore the sample_colors_db database and all of its text indexes:

1. Restore the text_db database:

1> use master
2> go

1> load database text_db from '/work2/sybase/textdbbackkup'
2> go

2. Restore the sample_colors_db database:

1> load database sample_colors_db from
'/work2/sybase/colorsbackup'
2> go

3. Bring the text_db and sample_colors_db databases online:

1> online database text_db
2> online database sample_colors_db
3> go

4. Restore the text index:

1> use sample_colors_db
2> go

1> sp_text_load_index
2> go

For more information, see “sp_text_load_index” on page A-28.

Full-Text Search Specialty Data Store User’s Guide 7-1

7 Performance and Tuning 7.

The Full-Text Search engine is shipped with a default configuration.
You can optimize the performance of the Full-Text Search engine by
altering the default configuration so that it better reflects the needs of
your site. This chapter describes ways in which you can enhance
performance. Topics include:

• Updating Existing Indexes 7-1

• Increasing Query Performance 7-2

• Reconfiguring Adaptive Server 7-3

• Reconfiguring the Full-Text Search Engine 7-4

• Using sp_text_notify 7-5

• Configuring Multiple Full-Text Search Engines 7-5

Updating Existing Indexes

The amount of time it takes to update records in a text index can be
reduced by enabling (turning on) trace flag 11 or trace flag 12, or
both:

• Enabling trace flag 11 disables Verity collection optimization.
This means that Verity does not optimize the text index after you
issue sp_text_notify, which is a performance gain. If trace flag 11 is
turned off (the default), the Full-Text Search engine calls Verity to
optimize the text index at the end of sp_text_notify processing,
which can delay the completion of sp_text_notify.

With Enhanced Full-Text Search Specialty Data Store, you can
use the sp_optimize_text_index system procedure to optimize a text
index at a later time if trace flag 11 is enabled. (For more
information, see “sp_optimize_text_index” on page A-10.)

• Enabling trace flag 12 disables the Full-Text Search engine from
returning sp_statistics information. If trace flag 12 is turned off (the
default), an update statistics command is issued to the Full-Text
Search engine, which can delay the completion of sp_text_notify.

If updates to the text index occur as often as every few seconds, you
may improve performance by disabling the update statistics processing
and the Verity optimization, or both, for most of the updates.

7-2 Performance and Tuning

Increasing Query Performance Full-Text Search SDS Version 11.9.2

Trace flags 11 and 12 can be enabled and disabled interactively using
the remote procedure calls sp_traceon and sp_traceoff in the Full-Text
Search engine. (See the Adaptive Server Reference Manual for
information on sp_traceon and sp_traceoff.)

Increasing Query Performance

Two issues can significantly improve query performance:

• Limiting the number of rows returned by the Full-Text Search
engine

• Ensuring the correct join order for queries

Limiting the Number of Rows

Use the max_docs pseudo column to limit the number of rows
returned by the Full-Text Search engine. The fewer the number of
rows returned by the Full-Text Search engine, the faster Adaptive
Server can process the join between the source table and the index
table.

Ensuring the Correct Join Order for Queries

The more tables and text indexes that are listed in a join, the greater
the chance that the query will run slowly because of incorrect join
order. Queries run fastest when the text index is queried first during
a join between the text index and one or more tables.

To ensure correct join order:

• Make sure that a unique clustered or nonclustered index is
created on the IDENTITY column of the table being indexed

• Limit joins to one base table and one text index

If a query is running slowly, use showplan or enable trace flag 11205,
and examine the join order. Trace flag 11205 dumps remote queries to
the Adaptive Server error log file. The fastest queries contain an
index_any search condition in the where clause and query the text index
first.

The slowest queries contain the id column in the text index where
clause and query the indexed table first. In this case, rewrite the
query or use forceplan to force the join order that is listed in your
query. For more information about forceplan, see Chapter 10,

Full-Text Search Specialty Data Store User’s Guide 7-3

Full-Text Search SDS Version 11.9.2 Reconfiguring Adaptive Server

“Advanced Optimizing Techniques,” in the Performance and Tuning
Guide.

Reconfiguring Adaptive Server

You can improve the performance of the Full-Text Search engine by
resetting the following Adaptive Server configuration parameters.
(For information about setting configuration parameters with
sp_configure, see Chapter 11,”Setting Configuration Parameters,” in
the System Administration Guide.)

cis cursor rows

The cis cursor rows parameter specifies the number of rows received by
Adaptive Server during a single fetch operation. The default number
for cis cursor rows is 50. Increasing this number increases the number
of rows received by Adaptive Server from the Full-Text Search
engine during a fetch operation. However, keep in mind that the
larger the number you set for cis cursor rows, the more memory
Adaptive Server allocates to that parameter.

cis packet size

The cis packet size parameter determines the number of bytes
contained in a single network packet. The default for cis packet size is
512. You must specify values for this parameter in multiples of 512.
Increasing this parameter improves the performance of the Full-Text
Search engine because, with a larger packet size, it returns fewer
packets for each query. However, keep in mind that the larger the
number you set for cis packet size, the more memory Adaptive Server
allocates to that parameter.

The cis packet size parameter is dynamic; you do not need to reboot
Adaptive Server for this parameter to take effect.

➤ Note
If you change the cis packet size, you must also change the max_packetsize
parameter in the Full-Text Search engine configuration file to the same

value.

7-4 Performance and Tuning

Reconfiguring the Full-Text Search Engine Full-Text Search SDS Version 11.9.2

You need to reboot the Full-Text Search engine for the max_packetsize
parameter to take effect.

Reconfiguring the Full-Text Search Engine

You can improve the performance of the Full-Text Search engine by
reconfiguring the following Full-Text Search engine configuration
parameters (see “Modifying the Configuration Parameters” on page
6-4):

batch_size

The batch_size configuration parameter determines the number of
rows per batch the Full-Text Search engine indexes. batch_size has a
default of 500 (that is, 500 rows of data indexed per batch).
Performance improves if you increase the size of the batches that are
indexed. However, the larger the batch size, the more memory the
Full-Text Search engine allocates to this parameter.

When considering how large to set batch_size, consider the size of the
data on which you are creating a text index. When creating the text
index, the Full-Text Search engine allocates memory equal to (in
bytes):

(amount of space needed for data) x (batch_size) = memory used

For example, if the data you are indexing is 10,000 bytes per row, and
batch_size is set to 500, then the Full-Text Search engine will need to
allocate almost 5MB of memory when creating the text index.

Base the batch size you choose on the typical size of your data and
the amount of memory available on your machine.

min_sessions and max_sessions

min_sessions and max_sessions determine the minimum and maximum
number of user connections allowed for the Full-Text Search engine.
Each user connection requires about 5MB of memory. Do not set
max_sessions to an amount that exceeds your available memory. Also,
because the memory for min_sessions is allocated at start-up, if you set
the number for min_sessions extremely high (to allow for a large
number of user connections), a large percentage of your memory will
be dedicated to user connections for the Full-Text Search engine.

Full-Text Search Specialty Data Store User’s Guide 7-5

Full-Text Search SDS Version 11.9.2 Using sp_text_notify

You may improve the performance of the Full-Text Search engine by
setting min_sessions equal to the average number of user sessions that
will be used. Doing so prevents the Full-Text Search engine from
having to allocate memory at the start of the user session.

Using sp_text_notify

Review the needs of your site before you decide how often to issue
sp_text_notify.

Using the sp_text_notify system procedure produces a load on the Full-
Text Search engine as the system procedure reads the data and
updates the text collections. Depending on the size of this load, the
performance hit for issuing sp_text_notify can be substantial. Because
of the performance implications, you must determine how up to date
the indexes need to be. If they need to be current (close to real-time),
then you will have to issue sp_text_notify frequently (as often as every
5 seconds). However, if your indexes do not need to be that current,
it may be prudent to wait until the system is not active before you
issue sp_text_notify.

➤ Note
You cannot issue sp_text_notify from within a transaction.

Configuring Multiple Full-Text Search Engines

For tables that are used frequently, you can improve performance by
placing the text indexes for these tables on separate Full-Text Search
engines. Performance improves because users can spread their
queries over a number of Full-Text Search engines, instead of
sending all queries to a single engine. Each Adaptive Server can
connect to multiple Full-Text Search engines, but each Full-Text
Search engine can connect to only one Adaptive Server.

Creating Multiple Full-Text Search Engines at Start-Up

If you are initially creating multiple Full-Text Search engines, you
can edit the installtextserver script so that it includes all of those Full-
Text Search engines. For more information, see “Editing the
installtextserver Script” on page 3-2.

7-6 Performance and Tuning

Configuring Multiple Full-Text Search Engines Full-Text Search SDS Version 11.9.2

Adding Full-Text Search Engines

You can add Full-Text Search engines at a later date by issuing the
sp_addserver command from isql. The sp_addserver command has the
following syntax:

sp_addserver server_name [, server_class [, physical_name]]

where:

• server_name is the name used to address the server on your
system (in this case, the Full-Text Search engine).

• server_class identifies the category of server being added. For the
Full-Text Search engine, the value is “sds”.

• physical_name is the name in the interfaces file used by the server
server_name.

For more information, see sp_addserver in the Adaptive Server Reference
Manual.

Follow the steps described in “Configuring the Full-Text Search
Engine” in the Installation and Release Bulletin for your platform, to
configure additional Full-Text Search engines. Each Full-Text Search
engine requires its own:

• Interfaces file entry

• Configuration file

All Full-Text Search engines use the same database (named text_db
by default) for storing text index metadata and the same vesaux and
vesauxcol tables.

For example, to add a Full-Text Search engine named BLUE, enter:

sp_addserver BLUE, sds, BLUE

After you configure and start the Full-Text Search engine, you can
use the following syntax to see if you can connect to the Full-Text
Search engine:

server_name ...sp_show

For example, to connect to a server named BLUE, enter:

BLUE...sp_show

Full-Text Search Specialty Data Store User’s Guide A-1

A System Procedures A.

This appendix describes the Sybase-supplied system procedures
used for updating and getting reports from system tables. Table A-1
lists the system procedures included with the Full-Text Search
engine.

Table A-1: System procedures

Procedure Description

sp_clean_text_events Removes entries from the text_events table.

sp_clean_text_indexes Cleans up stray indexes.

sp_create_text_index Creates an external text index.

sp_drop_text_index Drops text indexes.

sp_clean_text_events Removes processed entries from the text_events table.

sp_help_text_index Enhanced version only. Displays text indexes.

sp_optimize_text_index Enhanced version only. Runs the Verity optimization routines.

sp_redo_text_events Changes the status of entries in the text_events table and forces
re-indexing of the modified table.

sp_refresh_text_index Adds an entry to the text_events table for the update to a source
table.

sp_show_text_online Displays information about databases or indexes that are
currently online.

sp_text_cluster Enhanced version only. Displays or modifies clustering options.

sp_text_configure Enhanced version only. Displays or modifies Full-Text Search
engine configuration parameters.

sp_text_dump_database Enhanced version only. Makes a backup copy of the text indexes
in a database and optionally dumps the text_db and current
databases.

sp_text_kill Enhanced version only. Terminates all connections to a text
index.

sp_text_load_index Enhanced version only. Restores text indexes from a backup.

sp_text_notify Notifies the Full-Text Search engine that the text_events table has
been modified.

sp_text_online Makes a database available to Adaptive Server.

A-2 System Procedures

sp_clean_text_events Full-Text Search SDS Version 11.9.2

sp_clean_text_events

Function

Removes processed entries from the text_events table.

Syntax

sp_clean_text_events [up_to_date]

Parameters

up_to_date – the date and time through which all processed entries
will be deleted.

Examples

1. sp_clean_text_events "01/15/98:17:00"

Removes data entered on or before January 15, 1998 at 5:00 p.m.

Comments

• If the up_to_date parameter is specified, all entries having a date
less than or equal to up_to_date and whose status is set to
processed is deleted.

• If up_to_date is omitted, all entries whose status is set to processed
is deleted.

• Remove entries from the text_events table only after you have
backed up the collection associated with the text index.

• With the Enhanced Full-Text Search engine, the
sp_text_dump_database system procedure automatically runs this.

Messages

None

Permissions

Any user can execute sp_clean_text_events.

See Also

sp_text_dump_database

Full-Text Search Specialty Data Store User’s Guide A-3

Full-Text Search SDS Version 11.9.2 sp_clean_text_indexes

sp_clean_text_indexes

Function

Removes indexes from the vesaux table that are not associated with a
table.

Syntax

sp_clean_text_indexes

Parameters

None.

Examples

1. sp_clean_text_indexes

Comments

• This procedure reads entries from the vesaux and vesauxcol tables,
verifying that both the source table and the corresponding index
table exist. If either is missing, the index is dropped.

Messages

• Fetch resulted in an error

• Unable to drop object definition for index_name !

Permissions

Any user can execute sp_clean_text_indexes.

A-4 System Procedures

sp_create_text_index Full-Text Search SDS Version 11.9.2

sp_create_text_index

 Function

Creates an external text index.

 Syntax

sp_create_text_index server_name , index_table_name ,
table_name , option_string , column_name
[, column_name ...]

Parameters

server_name – is the name of the Full-Text Search engine.

index_table_name – is the name of the index table. index_table_name
has the form [dbname.[owner.]]table, where:

- dbname is the name of the database containing the index table.

- owner is the name of the owner of the index table.

- table is the name of the index table.

table_name – is the name of the source table containing the text being
indexed. table_name has the form [dbname.[owner.]]table.

option_string – is a placeholder for index creation options.

column_name – is the name of the column indexed by the text index.

Examples

1. sp_create_text_index "blue", "i_blurbs", "blurbs",
" ", "copy"

Creates a text index and an index table named i_blurbs on the
copy column of the blurbs table.

Comments

• Up to 16 columns can be indexed in a single text index.

• Columns of the following datatypes can be indexed:

- Standard version: char, varchar, nchar, nvarchar, text, image,
datetime, and smalldatetime

- Enhanced version: all datatypes in the Standard version, plus
int, smallint, and tinyint

Full-Text Search Specialty Data Store User’s Guide A-5

Full-Text Search SDS Version 11.9.2 sp_create_text_index

• The content of option_string is not case sensitive.

• option_string uses a null string (" ") to specify “No Options”.

• Assign the value “empty” to option_string to create a text index
that you will immediately drop. This creates the Verity collection
directory and the style files, but does not populate the collections.
For example, when you configure an individual table for
clustering, you create the text index and immediately drop it.
After you edit the style.prm file, you re-create the text index. For
more information, see “Editing Individual style.prm Files” on
page 4-3.

• sp_create_text_index writes entries to the vesaux table and tells the
Full-Text Search engine to create the text index.

• Execution of sp_create_text_index is synchronous. The Adaptive
Server process executing this system procedure remains blocked
until the index is created. The time required to index large
amounts of data may be take as long as several hours to complete.

• When you create a text index on two or more columns, each
column in the text index is placed into its own document zone.
The name of the zone is the name of the column. The zones can be
used to limit your search to a particular column. For more
information, see “in” on page 5-11.

Messages

• Can’t run sp_create_text_index from within a
transaction

• ' column_name ' cannot be NULL.

• Column ' column_name ' does not exist in table
' table_name '

• Index table mapping failed - Text Index creation
aborted

• Invalid text index name - ' index_name ' already
exists

• ' parameter ' is not in the current database

• Server name ' server_name ' does not exist in
sysservers.

• ' table_name ' does not exist

• ' table_name ' is not a valid object name

• Table ' table_name ' does not have an identity
column - text index creation aborted

A-6 System Procedures

sp_create_text_index Full-Text Search SDS Version 11.9.2

• Text index creation failed

• User ' user_name ' is not a valid user in the
database

Permissions

Any user can execute sp_create_text_index.

Full-Text Search Specialty Data Store User’s Guide A-7

Full-Text Search SDS Version 11.9.2 sp_drop_text_index

sp_drop_text_index

Function

Drops the index table and text indexes.

Syntax

sp_drop_text_index " table_name . index_table_name "
[," table_name . index_table_name "...]

Parameters

table_name – is the name of the table associated with the text indexes
you are dropping. table_name has the form [dbname.[owner.]]table,
where:

- dbname is the name of the database containing the table.

- owner is the name of the owner of the table.

- table is the name of the table.

index_table_name – is the name of the index table and text index you
are dropping. index_table_name has the form
[dbname.[owner.]]index.

Examples

1. sp_drop_text_index "blurbs.i_blurbs"

Drops the index table and text index associated with the blurbs
table.

Comments

• First, the sp_drop_text_index system procedure issues a remote
procedure call (RPC) to the Full-Text Search engine to delete the
Verity collection. Then, it removes the associated entries from the
vesaux and vesauxcol tables, drops the index table, and removes
the index table object definition.

• Up to 255 indexes can be specified in a single sp_drop_text_index
request.

• If database and owner are not specified, the current owner and
database are used.

A-8 System Procedures

sp_drop_text_index Full-Text Search SDS Version 11.9.2

Messages

• Can’t run sp_drop_text_index from within a
transaction.

• Index ' index_name ' is not a Text Index

• ' parameter_name ' is not a valid name

• Server name ' server_name ' does not exist in
sysservers

• Unable to drop index table ' table_name '. This
table must be dropped manually

• User ' user_name ' is not a valid user in the
'database_name' database

• vs_drop_index failed with code ' code_name '.

Permissions

Any user can execute sp_drop_text_index.

Full-Text Search Specialty Data Store User’s Guide A-9

Full-Text Search SDS Version 11.9.2 sp_help_text_index

sp_help_text_index

(Enhanced version only)

Function

Displays a list of text indexes for the current database.

Syntax

sp_help_text_index [index_table_name]

Parameters

index_table_name – is the name of the text index you want to display.

Examples

1. sp_help_text_index

Displays all indexes.

2. sp_help_text_index "i_blurbs"

Displays information about the text index i_blurbs.

Comments

• sp_help_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

• If the index_table_name parameter is specified, information about
that text index is displayed. This information includes the name
of the text index, the name of the Verity collection for the index,
the name of the source table, the name of the IDENTITY column,
and the name of the Full-Text Search engine that created the
index.

• If index_table_name is omitted, a list of all text indexes in the
current database is displayed

Messages

• No text indexes found in database ' database_name '

• Text index ' index_name ' does not exist in database
' database_name '

• Object must be in the current database

Permissions

Any user can execute sp_help_text_index.

A-10 System Procedures

sp_optimize_text_index Full-Text Search SDS Version 11.9.2

sp_optimize_text_index

(Enhanced version only)

Function

Performs optimization on a text index.

Syntax

sp_optimize_text_index index_table_name

Parameters

index_table_name – is the name of the text index you want to optimize.
index_table_name has the form [dbname.[owner.]]table, where:

- dbname is the name of the database containing the index table.
If present, the owner or a placeholder is required.

- owner is the name of the owner of the index table.

- table is the name of the index table.

Examples

1. sp_optimize_text_index "i_blurbs"

Optimizes the text index i_blurbs to improve query performance.

Comments

• sp_optimize_text_index is available only with Enhanced Full-Text
Search Specialty Data Store.

• This system procedure causes the Full-Text Search engine to run
the specified text index through the Verity optimization routines.

• sp_optimize_text_index is useful for optimizing a text index that has
been updated with Verity optimization disabled (trace flag 11
turned on).

Messages

• ' index_table_name ' is not in the current database

• ' index_table_name ' does not exist

• Index ' index_table_name ' is not a Text Index

• This procedure is not supported against remote
server 'server_name'

Full-Text Search Specialty Data Store User’s Guide A-11

Full-Text Search SDS Version 11.9.2 sp_optimize_text_index

Permissions

Any user can execute sp_optimize_text_index.

See Also

“Updating Existing Indexes” on page 7-1

A-12 System Procedures

sp_redo_text_events Full-Text Search SDS Version 11.9.2

sp_redo_text_events

Function

Changes the status of entries in the text_events table and forces the re-
indexing of the modified columns.

Syntax

sp_redo_text_events [from_date [, to_date]]

Parameters

from_date – is the starting date and time in a date range of entries to
be modified.

to_date – is the ending date and time in the specified date range of the
entries to be modified.

Examples

1. sp_redo_text_events "01/05/98:17:00",
"02/12/98:08:30"

Re-indexes columns that were modified between January 5, 1998
at 5:00 p.m. and February 12, 1998 at 8:30 a.m.

Comments

• Resets the status to “unprocessed” for all entries in the text_events
table that currently have a status of “processed.” The Full-Text
Search engine is notified that a re-index operation is required.

• Useful for synchronizing a text index after a recovery of the Verity
collection from a backup. When you use the Enhanced Full-Text
Search engine, this procedure is run automatically during
sp_text_load_index.

• If to_date is omitted, all entries between from_date and the current
date with a status of “processed” are reset to “unprocessed.”

• If both from_date and to_date are omitted, all entries in the
text_events table with a status of “processed” are reset to “un-
processed.”

Messages

• to_date cannot be specified without from_date

• You have not specified the full range.

Full-Text Search Specialty Data Store User’s Guide A-13

Full-Text Search SDS Version 11.9.2 sp_redo_text_events

Permissions

Any user can execute sp_redo_text_events.

A-14 System Procedures

sp_refresh_text_index Full-Text Search SDS Version 11.9.2

sp_refresh_text_index

Function

Records modifications in the text_events table when you change source
data.

Syntax

sp_refresh_text_index table_name , column_name , rowid ,
mod_type

Parameters

table_name – is the name of the source table being updated. table_name
has the form [dbname.[owner.]]table, where:

- dbname is the name of the database containing the table.

- owner is the name of the owner of the table.

- table is the name of the table.

column_name – is the name of the column being updated.

rowid – is the IDENTITY column value of the changed row.

mod_type – specifies the type of the change. Must be insert, update, or
delete.

Examples

1. sp_refresh_text_index "blurbs", "copy", 2.000000,
"update"

Records in the text_events table that you have updated the copy
column of the blurbs table. The row you have updated has an id
of 2.000000.

Comments

• The user maintains the consistency of the text index. You must
run sp_refresh_text_index anytime you update source data that has
been indexed so that the text_events table reflects the change. This
keeps the collections in sync with your source data. The
collections are not updated until you run sp_text_notify.

• You can create triggers that issue sp_refresh_text_index for non-text
and non-image columns. For more information on creating

Full-Text Search Specialty Data Store User’s Guide A-15

Full-Text Search SDS Version 11.9.2 sp_refresh_text_index

triggers, see “Propagating Changes to the Text Index” on page
3-9.

Messages

• Column ' column_name ' does not exist in table
' table_name '

• Invalid mod_type specified (' mod_type'). Correct
values: INSERT, UPDATE, DELETE

• Owner ' owner_name ' does not exist

• Table ' table_name ' does not exist

• ' table_name ' is not a valid name.

• Text event table not found

Permissions

Any user can execute sp_refresh_text_index.

See Also

sp_text_notify

A-16 System Procedures

sp_show_text_online Full-Text Search SDS Version 11.9.2

sp_show_text_online

Function

Displays information about databases or indexes that are currently
online.

Syntax

sp_show_text_online server_name [,{INDEXES |
DATABASES}]

Parameters

server_name – is the name of the Full-Text Search engine to which the
request is sent.

INDEXES | DATABASES – specifies whether the request should contain
data about online indexes or online databases. The default is
INDEXES.

Examples

1. exec sp_show_text_online KRAZYKAT

Displays all indexes that are currently online in the KRAZYKAT
Full-Text Search engine.

2. exec sp_show_text_online KRAZYKAT, DATABASES

Displays all databases that are currently online in the
KRAZYKAT Full-Text Search engine.

Comments

• sp_show_text_online issues a remote procedure call (RPC) to the Full-
Text Search engine to retrieve information about the indexes or
the databases that are currently online.

• If the results of this procedure do not list a database, use
sp_text_online to bring the desired database online.

Messages

• sp_show_text_online failed for server server_name .

• The parameter value ' value ' is invalid

• The RPC sent to the server returned a failure
return code

• The second parameter must be INDEXES or DATABASES

Full-Text Search Specialty Data Store User’s Guide A-17

Full-Text Search SDS Version 11.9.2 sp_show_text_online

Permissions

Any user can execute sp_show_text_indexes.

See Also

sp_text_online

A-18 System Procedures

sp_text_cluster Full-Text Search SDS Version 11.9.2

sp_text_cluster

(Enhanced version only)

Function

Displays or changes clustering parameters for the active thread.

 Syntax

sp_text_cluster server_name, cluster_parameter [,
cluster_value]

Parameters

server_name – is the name of the Full-Text Search engine.

cluster_parameter – is the name of the clustering parameter.
Values are shown in Table A-2.

cluster_value – is the value you assign to the clustering parameter for
the active thread. Values are shown in Table A-2.

Table A-2: Clustering configuration parameters

Values for
cluster_parameter Values for cluster_value

cluster_style Specifies the type of clustering to use. Valid values are:

• fixed – generates a fixed number of clusters. The number is set by
the cluster_max parameter.

• coarse – automatically determines the number of clusters to
generate, based on fewer, coarse grained clusters.

• medium – automatically determines the number of clusters to
generate, based on medium sized clusters.

• fine – automatically determines the number of clusters to
generate, based on smaller, finer grained clusters.

cluster_max Specifies the maximum number of clusters to generate when
cluster_style is set to fixed. A value of 0 means that the search engine
determines the number of clusters to generate.

Full-Text Search Specialty Data Store User’s Guide A-19

Full-Text Search SDS Version 11.9.2 sp_text_cluster

Examples

1. sp_text_cluster KRAZYKAT, cluster_order, "1"

Changes the cluster_order parameter to 1 for the active thread.

2. sp_text_cluster KRAZYKAT, cluster_style

Displays the current value of the cluster_style parameter.

Comments

• The Verity clustering algorithm attempts to group similar rows
together, based on the values of the clustering parameters.

• If the cluster_parameter parameter is specified, but the
cluster_value parameter is omitted, sp_text_cluster displays the
value of the clustering parameter that is specified.

• sp_text_cluster does not modify the value of the clustering
configuration parameter. The cluster_value is valid only for the
thread that is currently executing. To modify the default values,
use the sp_text_configure system procedure.

cluster_effort Specifies the amount of effort (time) that the search engine should
expend on finding a good clustering. Valid values are:

• effort_default – the search engine spends the default amount of
time. You can also use the Verity term “default” if you enclose it
in double quotes (““).

• high – the search engine spends the longest time.

• medium – the search engine spends less time.

• low – the search engine spends the least amount of time.

cluster_order Specifies the order in which to return the rows within the clusters.
Valid values are:

• "0" – indicates rows are returned in order of similarity to the
cluster center. This means the first row returned for a cluster is
the one that is most prototypical of the rows in the cluster.

• "1" – indicates that rows are returned in the same relative order in
which they were submitted for clustering. For example, if cluster
1 contains the first, third and seventh rows found for the query,
they will be returned in that relative order within the cluster.

Table A-2: Clustering configuration parameters (continued)

Values for
cluster_parameter Values for cluster_value

A-20 System Procedures

sp_text_cluster Full-Text Search SDS Version 11.9.2

• For information on how to request a clustered result set, see
“Using Pseudo Columns to Request Clustered Result Sets” on
page 5-6.

Messages

• This procedure is not supported against remote
server ' server_name '

• The parameter value ‘ value ’ is invalid

• sp_text_cluster failed (status = status)

Permissions

Any user can execute sp_text_cluster.

See Also

sp_text_configure

Full-Text Search Specialty Data Store User’s Guide A-21

Full-Text Search SDS Version 11.9.2 sp_text_configure

sp_text_configure

(Enhanced version only)

Function

Displays or changes Full-Text Search engine configuration
parameters.

 Syntax

sp_text_configure server_name [, config_name [,
config_value]]

Parameters

server_name – is the name of the Full-Text Search engine.

config_name – is the name of the configuration parameter to be
displayed or modified.

config_value – is the value you assign to the configuration parameter.

Examples

1. sp_text_configure KRAZYCAT, backdir, "/data/backup"

Changes the backup destination directory to /data/backup.

2. sp_text_configure KRAZYCAT, backdir

Displays the backup destination directory.

Comments

• When you execute sp_text_configure to modify a dynamic
parameter:

- The configuration and run values are updated

- The configuration file is updated

- The change takes effect immediately

• When you execute sp_text_configure to modify a static parameter:

- The configuration value is updated

- The configuration file is updated

- The change takes effect only when you restart the Full-Text
Search engine

A-22 System Procedures

sp_text_configure Full-Text Search SDS Version 11.9.2

• When issued with no parameters, sp_text_configure displays a
report of all Full-Text Search engine configuration parameters
and their current values.

• If the config_name parameter is specified, but the config_value
parameter is omitted, sp_text_configure displays the report for the
configuration parameter specified.

• For information on the individual configuration parameters, see
“Modifying the Configuration Parameters” on page 6-4.

Messages

• Configuration value cannot be specified without a
configuration option

• This procedure is not supported against remote
server 'server_name'

• sp_text_configure failed - possible invalid
configuration option (' config_name ')

Permissions

Any user can execute sp_text_configure.

Full-Text Search Specialty Data Store User’s Guide A-23

Full-Text Search SDS Version 11.9.2 sp_text_dump_database

sp_text_dump_database

(Enhanced version only)

Function

Makes a backup copy of a text index.

Syntax

sp_text_dump_database backupdbs [, current_to] [,
current_with] [, current_stripe01 [, ... [,
current_stripe31]]] [, textdb_to] [, textdb_with]
[, textdb_stripe01 [, ... [, textdb_stripe31]]]

Parameters

backupdbs – specifies whether the current database and the text_db
database are backed up before the text index is backed up. Valid
values are shown in Table A-3.

current_to – is the to clause of the dump database command for dumping
the current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

current_with – is the with clause of the dump database command for
dumping the current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

current_stripe – is the stripe clause of the dump database command for
dumping the current database. Use this only if you specify

Table A-3: Values for backupdbs

Value Description

CURRENT_DB_AND_INDEXES Indicates that the current database is backed up
before the text indexes are backed up.

TEXT_DB_AND_INDEXES Indicates that the text_db database is backed up before
the text indexes are backed up.

INDEXES_AND_DATABASES Indicates that the current and text_db databases are
backed up before the text indexes are backed up.

ONLY_INDEXES Indicates that only the text indexes are backed up.

A-24 System Procedures

sp_text_dump_database Full-Text Search SDS Version 11.9.2

CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

textdb_to – is the to clause of the dump database command for dumping
the text_db database. Use this only if you specify
INDEXES_AND_DATABASES for the backupdbs parameter. Use this only
if you specify TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for
the backupdbs parameter.

textdb_with – is the with clause of the dump database command for
dumping the text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the backupdbs
parameter.

textdb_stripe – is the stripe clause of the dump database command for
dumping the text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the backupdbs
parameter.

Examples

1. sp_text_dump_database ONLY_INDEXES

Only text indexes are backed up.

2. sp_text_dump_database CURRENT_DB_AND_INDEXES, "to
'/data/db1backup'"

The current database is dumped to /data/db1backup before the
text indexes are backed up.

3. sp_text_dump_database @backkupdbs =
"TEXT_DB_AND_INDEXES", @textdb_to = "to
'/data/textdbbackup'"

The text_db database is dumped to /data/textdbbackup before the
text indexes are backed up.

4. sp_text_dump_database @backupdbs =
"INDEXES_AND_DATABASES", @current_to = "to
'/data/db1backup'",
@textdb_to = "to '/data/textdbbackup'"

The current database is dumped to /data/db1backup and the
text_db database is dumped to /data/textdbbackup before the text
indexes are backed up.

Comments

• The Full-Text Search engine concatenates the values of current_to,
current_with, and current_stripe01 to current_stripe31 to dump

Full-Text Search Specialty Data Store User’s Guide A-25

Full-Text Search SDS Version 11.9.2 sp_text_dump_database

database currentdbname and then executes the dump database
command. The output from the execution of the dump database
command is sent to the Full-Text Search error log.

• The Full-Text Search engine concatenates the values of textdb_to,
textdb_with, and textdb_stripe01 to textdb_stripe31 to the string
“dump database currentdbname” and then executes the dump database
command. The output from the execution of the dump database
command is sent to the Full-Text Search error log.

• All entries in the text_events table that have a “processed” status
in the current database are deleted when all indexes have been
backed up.

• The backup files for the Verity collections are stored in the
directory specified in the backDir configuration parameter.

Messages

• The parameter value ‘ value ’ is invalid

• Server name ‘ server ’ does not exist in sysservers

• Attempt to dump database ‘ database_name’ failed -
use the 'dump database' command

• Attempt to backup text indexes on server
' server_name ' failed

• Attempt to clean text_events in database
‘ database_name’ failed (date = ' date ')

• Parameter ' parameter_name ' is required when
dumping database ‘ database_name’

• Dumping database ' database_name ' - check Full Text
Search SDS error log for status

Permissions

Any user can execute sp_text_dump_database.

See Also

dump_database in the Adaptive Server Reference Manual

A-26 System Procedures

sp_text_kill Full-Text Search SDS Version 11.9.2

sp_text_kill

(Enhanced version only)

Function

Terminates all connections to a text index.

Syntax

sp_text_kill index_table_name

Parameters

index_table_name – is the name of the text index from which all
connections will be terminated. index_table_name has the form
[dbname.[owner.]]table, where:

- dbname is the name of the database containing the index table.
If present, the owner or a placeholder is required.

- owner is the name of the owner of the index table.

- table is the name of the index table.

Examples

1. sp_text_kill "i_blurbs"

Terminates all existing connections to the text index i_blurbs.

Comments

• sp_text_kill is available only with Enhanced Full-Text Search
Specialty Data Store.

• This system procedure causes the Full-Text Search engine to
terminate all connections to the specified index, except for the
connection that initiated the request.

• Attempts to drop a text index that is currently in use will fail.
sp_text_kill can be used to terminate all existing connections so that
the index can be successfully dropped.

Messages

• Index ' index_table_name ' is not a text index

• This procedure is not supported against remote
server ' server_name '

• ' index_table_name ' does not exist

Full-Text Search Specialty Data Store User’s Guide A-27

Full-Text Search SDS Version 11.9.2 sp_text_kill

• Only the System Administrator (SA) may execute
this procedure

Permissions

Only user “sa” can execute sp_text_kill.

See Also

sp_drop_text_index

A-28 System Procedures

sp_text_load_index Full-Text Search SDS Version 11.9.2

sp_text_load_index

(Enhanced version only)

Function

Restores a text index backup.

Syntax

sp_text_load_index

Parameters

None.

Examples

1. sp_text_load_index

Restores all text indexes in the current database.

Comments

• Run sp_text_load_index after the text_db database and the current
database have been fully recovered.

• sp_text_load_index restores the Verity collections from the most
recent backup. The Full-Text Search engine then runs
sp_redo_text_events and sp_text_notify to reapply all entries in the
text_events table since the date and time the index was backed up.

Messages

• Server name ‘ server_name ’ does not exist in
sysservers

• Unable to restore text indexes for server
‘ server_name’

• This procedure is not supported against remote
server 'server_name'

• Update to text_events table in database
database_name failed for server ‘ server_name’ -
text_events not rolled forward

Permissions

Any user can execute sp_text_load_index.

Full-Text Search Specialty Data Store User’s Guide A-29

Full-Text Search SDS Version 11.9.2 sp_text_load_index

See Also

sp_redo_text_events; sp_text_notify

A-30 System Procedures

sp_text_notify Full-Text Search SDS Version 11.9.2

sp_text_notify

Function

Notifies the Full-Text Search engine that the text_events table has
been modified.

Syntax

sp_text_notify [{true | false}] [, server_name]

Parameters

true – causes the procedure to run synchronously.

false – causes the procedure to run asynchronously.

server_name – is the name of the Full-Text Search engine you are
notifying.

Examples

1. sp_text_notify true

Comments

• You must run sp_text_notify after you issue sp_refresh_text_index to
inform the Full-Text Search engine that the source tables have
been modified.

• If you do not specify true or false, sp_text_notify runs synchronously.

• If no server name is specified, all Full-Text Search engines are
notified.

Messages

• Can’t run sp_text_notify from within a transaction

• Notification failed, server = ' server_name '

• Server name ' server_name ' does not exist in
sysservers

• The parameter value ' value ' is invalid

Permissions

Any user can execute sp_text_notify.

See Also

sp_refresh_text_index

Full-Text Search Specialty Data Store User’s Guide A-31

Full-Text Search SDS Version 11.9.2 sp_text_online

sp_text_online

Function

Makes a database available for full-text searches to Adaptive Server.

Syntax

sp_text_online [server_name], [database_name]

Parameters

server_name – is the name of the Full-Text Search engine.

database_name – is the name of the database that you are bringing
online.

Examples

1. sp_text_online @database_name = pubs2

Makes the pubs2 database available for full-text searches using
the Full-Text Search engine.

Comments

• If a database is not specified, all databases are brought online for
full-text searches.

• If a server name is not specified, all Full-Text Search engines listed
in the vesaux table are notified.

• With the Enhanced Full-Text Search engine, databases are
brought online automatically if the auto_online configuration
parameter is set to 1.

Messages

• All Databases using text indexes are now online

• Databases containing text indexes on server
'database_names' are now online

• Server name 'server_name' is now online”

• Server name 'server_name' does not exist in
sysservers.

• The parameter value ' value' is invalid

• The specified database does not exist

• vs_online failed for server ' server_name'

A-32 System Procedures

sp_text_online Full-Text Search SDS Version 11.9.2

Permissions

Any user can execute sp_text_online.

Full-Text Search Specialty Data Store User’s Guide B-1

B Sample Files B.

This appendix contains the following:

• The text of the default configuration file (textsvr.cfg)

• An overview of the sample_text_main.sql sample script

• A list of all the sample files provided by the Full-Text Search
engine

• An overview of the getsend program

Default textsvr.cfg Configuration File

;;;
; @(#) File: textsvr.cfg 1.11 03/03/98
;
; Full Text Search Specialty Data Store -- 11.5
; Sample Configuration File
;
; The installation procedure places this file in the
; “SYBASE” directory.
;
; Lines with a semi-colon in column 1 are comment lines.
;
; Modification History:
; ---------------------
; 11-21-97 Create file for Standard Full Text Search SDS
; 03-02-98 Add trace flags and config values for
; Enhanced Full Text Search SDS
;
;;;
;
; Copyright (c) 1997, 1998 Sybase, Inc.
; Emeryville, CA.
; All rights reserved.
;
;;;
; DIRECTIONS
;
; Modifying the textsvr.cfg file:
; -------------------------------
; An installation can run the Text Search SDS product
; as supplied, with no modifications to configuration
; parameters. Default values from the executable program
; are in effect.
;
; The "textsvr.cfg" file is supplied with all configuration

B-2 Sample Files

Default textsvr.cfg Configuration File Full-Text Search SDS Version 11.9.2

; parameters commented out.
;
; The hierarchy for setting configuration values is:
;
; default value internal to the executable program (lowest)
; configuration file value (overrides default value)
; command line argument (overrides default value and *.cfg file)
;
; Command line arguments are available to override
; settings for these options:
;
; -i<file specification for interfaces file>
; -t (no arg) directs text server to write start-up
; information to stderr (default is DO NOT write start-up
; information)
;
; To set configuration file parameters, follow these steps:
;
; (1) If changing the server name to other than "textsvr":
; (1A) Copy "textsvr.cfg" to "your_server_name.cfg"
; Example: text_server_115.cfg
; (1B) Modify the [textsvr] line to [your_server_name]
; Example: [text_server_115]
; The maximum length of "your_server_name" is 30 characters.
;
; (2) Set any configuration values in the CONFIG VALUES SECTION below.
; Remove the semi-colon from column 1.
;
;;
;
; DEFINITIONS OF TRACE FLAG AND SORT ORDER VALUES
;
; "traceflags" parameter, for text server
; Available "traceflags" values: 1,2,3,4,5,6,7,8,9,10,11,12, 13
;
; 1 trace connect/disconnect/attention events
; 2 trace language events
; 3 trace rpc events
; 4 trace cursor events
; 5 log error messages returned to the client
; 6 trace information about indexes
; 7 trace senddone packets
; 8 write text server/Verity api interface records to the log
; 9 trace sql parser
; 10 trace Verity processing
; 11 disable Verity collection optimization
; 12 disable returning of sp_statistics information
; 13 trace backup operations (Enhanced Full Text Search only)
;
; "srv_traceflags" parameter, for Open Server component of text server
; Available "srv_traceflags" values: 1,2,3,4,5,6,7,8
; 1 trace TDS headers

Full-Text Search Specialty Data Store User’s Guide B-3

Full-Text Search SDS Version 11.9.2 Default textsvr.cfg Configuration File

; 2 trace TDS data
; 3 trace attention events
; 4 trace message queues
; 5 trace TDS tokens
; 6 trace open server events
; 7 trace deferred event queue
; 8 trace network requests
;
; "sort_order" parameter
; Available "sort_order" values: 0,1,2,3
; 0 order by score, descending (default)
; 1 order by score, ascending
; 2 order by timestamp, descending
; 3 order by timestamp, ascending
;
;;

; CONFIG VALUES SECTION
;
; The "textsvr.cfg" file is supplied with the values commented out.
; To override value(s) in the executable program:
; - Set required value(s) below
; - Remove the semicolon from column 1
;
[textsvr]
;min_sessions = 10
;max_sessions = 100
;batch_size = 500
;sort_order = 0
;defaultDb = text_db
;errorLog = textsvr.log
;language = us_english
;charset = iso_1
;vdkLanguage = english0
;vdkCharset = 850
;traceflags = 0
;srv_traceflags = 0
;max_indexes = 126
;max_packetsize = 2048
;max_stacksize = 34816
;max_threads = 50
;collDir = <$SYBASE location on UNIX>/sds/text/collections
;collDir = <%SYBASE% location on Win-NT>\sds\text\collections
;vdkHome = <$SYBASE location on UNIX>/sds/text/verity
;vdkHome = <%SYBASE% location on Win-NT>\sds\text\verity
;interfaces = <$SYBASE location on UNIX>/interfaces
;interfaces = <%SYBASE% location on Win-NT>\ini\sql.ini
;;;
;
; The parameters in this section apply only to the Enhanced Full Text
; Search SDS.
; If defined to a Standard Full Text Search engine they will be ignored.

B-4 Sample Files

The sample_text_main.sql Script Full-Text Search SDS Version 11.9.2

;
;auto_online = 0
;backDir = <$SYBASE location on UNIX>/sds/text/backup
;backDir = <%SYBASE% location on Win-NT>\sds\text\backup
;knowledge_base =
;nocase = 0
;cluster_max = 0
;cluster_order = 0
;cluster_style = Fixed
;cluster_effort = Default

The sample_text_main.sql Script

The installation of the Full-Text Search engine copies the
sample_text_main.sql script to the $SYBASE/sds/text/sample/scripts
directory. This script illustrates the following operations:

• Setting up a text index.

• Modifying data and propagating changes to the collections. This
includes inserts, updates, and deletes.

• Dropping a text index.

Execution of this script is not required for installation or
configuration; Sybase supplies the script as a sample.

Before you run the sample_text_main.sql script:

• Your Adaptive Server and Full-Text Search engine must be
configured and running.

• Use a text editor to edit the sample_text_main.sql script. Change
“YOUR_TEXT_SERVER” to the name of your Full-Text Search
engine in Step 4 in the sample_text_main.sql script.

• Verify that your model database contains a text_events table. If
your model database is not configured this way, you need to:

- Modify the sample_text_main.sql script to exit after creating the
database

- Apply the installevent script to the new database (see “Running
the installevent Script” on page 3-4)

- Execute the remainder of the sample script

Direct the script as input to your Adaptive Server. For example, to
run the sample_text_main.sql script on an Adaptive Server named
MYSVR:

isql -U login -P password -SMYSVR
-i $SYBASE/sds/text/sample/scripts/sample_text_main.sql -omain.out

Full-Text Search Specialty Data Store User’s Guide B-5

Full-Text Search SDS Version 11.9.2 Sample Files Illustrating Full-Text Search Engine Features

When you finish with this sample environment, log in to your
Adaptive Server and drop the sample database. For example:

1> use master
2> go
1> drop database sample_colors_db
2> go

The sample_text_main.sql script can be rerun.

Sample Files Illustrating Full-Text Search Engine Features

The Full-Text Search engine supplies a set of sample files for
illustrating text server operations. The files are located in the
$SYBASE/sds/text/sample/scripts directory. Execution of the sample
files is not required for installation, configuration, or operation of a
Full-Text Search engine.

Custom Thesaurus

The following files illustrate how to set up and use a custom
thesaurus:

• sample_text_thesaurus.ctl – is a sample control file.

• sample_text_thesaurus.sql – provides sample queries using the
custom thesaurus created by the sample control file.

You can create a custom thesaurus only with the Enhanced Full-Text
Search engine. The scripts can be rerun.

Topics

The following files illustrate how to set up and use topics:

• sample_text_topics.otl – is a sample outline file.

• sample_text_topics.kbm – is a sample knowledge base map.

• sample_text_topics.sql – provides sample queries using the defined
topics.

Topics is available only with the Enhanced Full-Text Search engine.
The scripts can be rerun.

B-6 Sample Files

getsend Sample Program Full-Text Search SDS Version 11.9.2

Clustering, Summarization, and Query-by-Example

The following files illustrate how to set up and use clustering,
summarization and query-by example:

• sample_text_setup.sql – creates a sample environment.

• sample_text_queries.sql – issues queries against the environment
and drops the environment.

You can use these scripts only with the Enhanced Full-Text Search
engine. These scripts can be rerun as a pair.

getsend Sample Program

The Enhanced Full-Text Search engine supplies a program named
getsend to load text or image data from a file into a column defined in
Adaptive Server.

The required source and header files, a makefile, and directions for
building and running the program are included in the directory:

$SYBASE/sds/text/sample/source

Refer to the README.TXT file and getsend.c file for information on
how to use the program.

Full-Text Search Specialty Data Store User’s Guide C-1

C Unicode Support C.

The Unicode standard, a subset of the International Standards
Organization's ISO 10646 standard, is an international character set.
Unicode is identical to the Basic Multilingual Plane (BMP) of ISO
10646, which supports all the major scripts and languages in the
world. Therefore, it is a superset of all existing character sets.

The major advantages of Unicode are:

• Provides single-source development. This means you develop an
application once and it can then be localized for multiple locales
and in multiple languages. By using a single unified character set,
you do not have to modify your applications to take into account
differences between character sets, thus reducing development,
testing, and support costs.

• Allows you to mix different languages in the same database. An
all-Unicode system does not require that you design your
database to keep track of the character set of your data.

The Enhanced Full-Text Search engine supports Unicode. To use this
feature, you need to obtain and install the Unicode Developer’s Kit
(also known as UDK). This contains everything you need to set up a
Unicode-enabled client/server database system.

To configure the Full-Text Search engine to store data in Unicode
format, set the charset configuration value to utf8 (see “Modifying the
Configuration Parameters” on page 6-4).

➤ Note
If you issue wildcard searches against data in Unicode format, turn on trace

flag 15. For more information, refer to “Setting Trace Flags” on page 6-10,

C-2 Unicode Support

Full-Text Search SDS Version 11.9.2

Full-Text Search Specialty Data Store User’s Guide Index-1

Index

Symbols
, (comma)

in SQL statements xix
{} (curly braces)

in SQL statements xix
... (ellipsis) in SQL statements xxi
() (parentheses)

in SQL statements xix
[] (square brackets)

in SQL statements xix
<>(angle brackets), enclosing Verity

operators in 5-9

A
accrue operator 5-8, 5-11
Adaptive Server

connecting to a Full-Text Search
engine 1-1

processing a full-text query 2-7
and operator 5-8, 5-11

with the not modifier 5-19
Angle brackets, enclosing Verity

operators in 5-9
Attention events, tracing 6-11

Open Server 6-12
auto_online configuration parameter 3-9,

6-6, A-31

B
backDir configuration parameter 6-6,

6-17, A-25
Backup and recovery

for the Enhanced version 6-16
for the Standard version 6-13

Backup files
default location of 6-6

Backup operations, tracing 6-11
batch_size configuration parameter 6-4

and performance 7-4
Brackets. See Square brackets [] and

Angle brackets <>

C
case operator modifier 5-19
Case sensitivity

in queries 5-10
setting for the Full-Text Search

engine 6-12
in SQL xx

Character sets
setting the default 6-8 to 6-9

charset configuration parameter 6-5
setting the default 6-8

cis cursor rows configuration
parameter 7-3

cis packet size configuration
parameter 7-3

cluster_effort configuration
parameter 5-7, 6-6

values for A-19
cluster_keywords pseudo column 5-2, 5-7
cluster_max configuration parameter 5-7,

6-6
values for A-18

cluster_number pseudo column 5-2, 5-7
cluster_order configuration

parameter 5-7, 6-6
values for A-19

cluster_style configuration parameter 5-7,
6-6

values for A-18
Clustering 5-6

configuring for all tables 4-2
configuring for individual tables 4-3
enabling 4-1
modifying values of parameters

for A-18
setting up 5-7

Index-2

Full-Text Search SDS Version 11.9.2

in a sort specification 5-5
writing queries for 5-7

collDir configuration parameter 6-5
Collections 2-2

See also text indexes
backing up in the Enhanced

version 6-16, A-23
backing up in the Standard

version 6-14
backup and recovery in the Enhanced

version 6-16
backup and recovery in the Standard

version 6-13
creating A-4
default character set 6-8
default language 6-7
disabling optimization 6-11, 7-1
displaying the names of A-9
dropping A-7
location of 2-2
setting the location of 6-5
modifying data in 3-9
optimizing A-10
performance issues when

updating 7-5
populating with data 3-7
and reindexing A-12
restoring from backup in Enhanced

version 6-16
restoring from backup in Standard

version 6-15, 6-17
Columns

valid datatypes to index 2-1
Comma (,)

in SQL statements xix
Commands in Verity. See Operators

(commands)
complement operator 5-8, 5-11
Component Integration Services

connecting to a Full-Text Search
engine 1-1

Configuration file
editing parameter values 6-6
sample B-1 to B-4

Configuration parameters 6-4 to 6-6
See also individual configuration

parameters
auto_online A-31
backDir 6-17, A-25
batch_size parameter and

performance 7-4
charset 6-8
cluster_effort 5-7, A-19
cluster_max 5-7, A-18
cluster_order 5-7, A-19
cluster_style 5-7, A-18
displaying values in the Enhanced

version A-21
language 6-7
max_sessions parameter and

performance 7-4 to 7-5
min_sessions parameter and

performance 7-4 to 7-5
modifying values in the Enhanced

version 6-7, A-21
modifying values in the Standard

version 6-6
nocase 6-12
sort_order 5-4, 6-9
srv_traceflags 6-12
vdkCharset 6-8
vdkLanguage 6-7

Configuration parameters, Adaptive
Server

cis cursor rows 7-3
cis packet size 7-3

Connecting to a Full-Text Search
engine 7-6

Connections, number of user 7-4
Conventions

See also Syntax
directory paths xviii
used in manuals xix

Curly braces ({})
in SQL statements xix

Cursor events, logging 6-11
Custom thesaurus 4-7

and creating the control file 4-9

Full-Text Search Specialty Data Store User’s Guide Index-3

Full-Text Search SDS Version 11.9.2

and examining the default
thesaurus 4-8

and the mksyd utility 4-10
and replacing the default

thesaurus 4-10

D
Databases

bringing online for full-text
searches 3-9

Databases, bringing online
automatically 6-6

Datatypes
and indexing 3-7
of indexed columns 2-1, A-4

default_Db configuration parameter 6-5
Defining multiple Full-Text Search

engines 3-2
delete operations

creating triggers for 3-10
Deletes

and updating the text indexes 2-4
from the text_events table A-2
from the vesaux table A-3

Document filters 2-1
Document zones

and multiple columns in a text
index 3-8

using with the in operator 5-11
dump database command

and the sp_text_dump_database system
procedure 6-17, A-25

using in the Standard version 6-14

E
Ellipsis (...) in SQL statements xxi
errorLog configuration parameter 6-5
Error log file

setting the path name of 6-5
specifying in the runserver file 6-2

Error logging 6-11
Events, logging 6-10 to 6-12

F
Filters, document 2-1

creating 4-6
and document zones 5-12

forceplan
and forcing join orders 7-2

Full-Text Search engine
changing the name of 3-2
configuring multiple engines 3-2, 7-5

to 7-6
connecting to 7-6
document filters 2-1
how queries are processed 2-6 to 2-7
notifying of updates to the text_events

table A-30
operators 5-8 to 5-18
relationship of components 2-6
shutting down 6-4
starting as a service 6-3
starting for UNIX platforms 6-1
starting for Windows NT 6-2 to 6-4
starting with Sybase Central 6-2

Full-text search queries
bringing databases online for 3-9
and case sensitivity 5-10
components of 5-1
processing a 2-7
and requesting clustered result

sets 5-7
sort order specifications 5-4 to 5-5
and using topics 4-14
using alternative syntax 5-10

Full-Text Search Specialty Data Store
components of 2-1 to 2-6

G
getsend program B-6

H
highlight pseudo column 5-2

Index-4

Full-Text Search SDS Version 11.9.2

I
IDENTITY columns

adding a unique index 3-7
adding to existing source table 3-6
displaying with the text index A-9
example of adding 3-12
joining with the index table 2-3, 2-7
scale and precision required 3-6
in the source table 2-1

id pseudo column 2-3, 5-2
mapping to the IDENTITY column in

the source table 3-6
and query optimization 7-2

index_any pseudo column 5-2
and query optimization 7-2

Index table
contents of 2-3
creating 3-7, A-4
dropping A-7
and the id column 3-6
in a query 2-6
joining with the source table 2-3
and pseudo columns 2-4, 5-2

in operator 5-8, 5-11
insert operations

creating triggers for 3-10
Inserts

and updating the text indexes 2-4
installevent installation script

editing 3-4
example of using 3-11
using 3-4

installtextserver installation script
and creating multiple Full-Text Search

engines 7-5
editing 3-2, 3-3
location of 3-2

instsvr.exe utility 6-3
Integrity, maintaining 2-2
Interfaces

tracing calls between Full-Text Search
engine and Verity 6-11

interfaces configuration parameter 6-5
Interfaces file

setting the location of 6-5
specifying in the runserver file 6-2

J
Joining the source table with the text

index 2-2, 2-3, 2-6, 3-6, 5-1
and increasing performance of 7-2

Join order
ensuring correct 7-2

K
⁄keys modifier 4-9
knowledge_base configuration

parameter 4-14, 6-6
Knowledge base map

creating 4-14
defining the location of 4-14

L
Language

setting the default 6-7 to 6-8
language configuration parameter 6-5

setting the default 6-7
Language events, logging 6-11
like operator 5-8, 5-12

enabling literal text in the QBE
specification 4-1

list: keyword 4-9
Logging events using trace flags 6-10 to

6-12

M
Maintaining integrity 2-2
many operator modifier 5-19
max_docs pseudo column 5-3

with clustered result sets 5-7
and increasing query

performance 7-2
and sort orders 6-10

Full-Text Search Specialty Data Store User’s Guide Index-5

Full-Text Search SDS Version 11.9.2

max_indexes configuration parameter 6-4
max_packetsize configuration

parameter 6-4
max_sessions configuration

parameter 6-5
and performance 7-4 to 7-5

max_stacksize configuration
parameter 6-4

max_threads configuration parameter 6-4
Metadata 2-2
min_sessions configuration parameter 6-5

and performance 7-4 to 7-5
mksyd utility

and creating a custom thesaurus 4-10
and examining the default

thesaurus 4-8
mktopics utility 4-13

N
Naming the Full-Text Search engine 6-5
near/n operator 5-8, 5-13

with the order modifier 5-19
near operator 5-8, 5-12, 5-13
Network requests, tracing 6-12
nocase configuration parameter 6-6, 6-12
not operator modifier 5-19

O
Online databases. See Databases,

bringing online
Open Server events, tracing 6-12
Open Server trace flags 6-12
Operator modifiers

case 5-19
many 5-19
not 5-19
order 5-19

Operators (commands) 5-8 to 5-18
accrue 5-8, 5-11
and 5-8, 5-11
complement 5-8, 5-11
enclosing in angle brackets 5-9

in 5-8, 5-11
like 5-8, 5-12
near 5-8, 5-12, 5-13
near/n 5-8, 5-13
or 5-8, 5-11
paragraph 5-8, 5-14
phrase 5-8, 5-13
product 5-9, 5-14
and relevance-ranking 5-3 to 5-4
sentence 5-9, 5-14
stem 5-9, 5-15
sum 5-9, 5-15
thesaurus 5-9, 5-15
topic 5-9, 5-16
wildcard 5-9, 5-17
word 5-9, 5-18
yesno 5-9, 5-18

Optimization, disabling 6-11, 7-1
order operator modifier 5-19
or operator 5-8, 5-11

with the not modifier 5-19
Outline file for topics 4-12

P
paragraph operator 5-8, 5-14

with the many modifier 5-19
with the order modifier 5-19

Parameters
of a search 2-4

Parentheses ()
in SQL statements xix

Performance and tuning
adding a unique index 3-7
and using multiple Full-Text Search

engines 7-5
disabling text index optimization 7-1
increasing query performance 7-2 to

7-3
reconfiguring Adaptive Server 7-3 to

7-4
reconfiguring the Full-Text Search

engine 7-4 to 7-5
and sp_text_notify 7-5

Index-6

Full-Text Search SDS Version 11.9.2

phrase operator 5-8, 5-13
with the many modifier 5-19

Procedures. See System procedures
Processed events

removing from the text_events
table A-2

Processing full-text searches 2-6
product operator 5-9, 5-14
Propagating changes to the

collections 2-4
Proxy tables as a source table 2-2
Pseudo columns 2-4

cluster_keywords 5-2, 5-7
cluster_number 5-2, 5-7
highlight 5-2
id 5-2
in a query 2-6
index_any 5-2
max_docs 5-3, 5-7
score 5-3 to 5-4
sort_by 5-3, 5-4 to 5-5, 5-7
summary 5-3, 5-6

Q
QBE specification. See

Query-by-example
Queries

and pseudo columns 2-4
Queries, full-text search

bringing databases online for 3-9
and case sensitivity 5-10
components of 5-1
ensuring the correct join order 7-2
increasing performance of 7-2 to 7-3
processing of 2-6, 2-7
requesting clustered result sets 5-7
sort order specifications 5-4 to 5-5
and using topics 4-14
using alternative syntax 5-10

Query-by-example
configuring for all tables 4-2
configuring for individual tables 4-3
enabling 4-1

and the like operator 5-12

R
Ranking documents. See

Relevance-ranking
Recovery

and synchronizing a text index with
the source table A-12

for the Enhanced version 6-16
for the Standard version 6-13

Relevance-ranking 5-3 to 5-4
See also score pseudo column

Remote procedure calls
sp_traceoff 6-11, 7-2
sp_traceon 6-11, 7-2

Remote tables as a source table 2-2
Replicating text indexes 3-10
RPC events, logging 6-11
RPCs. See Remote procedure calls
Runserver file 6-1

flags for 6-1

S
Sample files

configuration file B-1 to B-4
illustrating clustering B-6
illustrating custom thesaurus 4-8, B-5
illustrating query-by-example B-6
illustrating summarization B-6
illustrating topics feature 4-12, B-5

Sample program getsend B-6
Sample scripts

sample_text_main.sql 3-6, 3-10, B-4
score pseudo column 2-4, 5-3 to 5-4

with clustered result sets 5-7
and default sort order 6-9
and the many modifier 5-19
sorting by 5-5

score values
how Sybase reports 5-4

Scripts, sample
sample_text_main.sql 3-6, 3-10, B-4

Full-Text Search Specialty Data Store User’s Guide Index-7

Full-Text Search SDS Version 11.9.2

Search parameters 2-4
sentence operator 5-9, 5-14

with the many modifier 5-19
with the order modifier 5-19

Sessions, number of user 7-4
showplan

and examining join orders 7-2
Shutting down the Full-Text Search

engine 6-4
sort_by pseudo column 5-3

and requesting a clustered result
set 5-7

and specifying a sort order 5-4 to 5-5
and setting up a defined column as a

sort specification 4-4
sort_order configuration parameter 5-4,

6-5, 6-9
Sort orders

and clustered result sets 5-5, 5-7
by column 4-4, 5-5
in a query 5-4 to 5-5
max_docs and sort order 6-10
by score 5-5
setting the default 6-9
by timestamp 5-5, 6-10

Sort specifications
setting up a defined column to sort

by 4-4
Source tables

adding an IDENTITY column to 3-6
changes to data A-14, A-30
contents of 2-1
and displaying text indexes A-9
in a query 2-6

sp_addserver system procedure 7-6
sp_clean_text_events system

procedure A-2
sp_clean_text_indexes system

procedure A-3
sp_create_text_index system procedure 3-7,

A-4 to A-6
creating indexes that use a filter 4-6
example of using 3-12
specifying multiple columns 3-8

sp_drop_text_index system procedure A-7
to A-8

sp_help_text_index system procedure A-9
sp_optimize_text_index system

procedure 7-1, A-10 to A-11
sp_redo_text_events system

procedure A-12 to A-13
and restoring text indexes in Standard

version 6-15
sp_refresh_text_index system

procedure A-14 to A-15
modifying data in the collections 3-9
running automatically 3-10

sp_show_text_online system
procedure A-16 to A-17

sp_statistics system procedure
disabling 6-11, 7-1

sp_text_cluster system procedure A-18 to
A-20

sp_text_configure system procedure 6-7,
A-21 to A-22

sp_text_dump_database system
procedure 6-16, A-23 to A-25

sp_text_kill system procedure A-26 to
A-27

sp_text_load_index system procedure 6-17,
A-28 to A-29

sp_text_notify system procedure A-30
and modifying data in the

collections 3-9
and performance issues 7-5
and restoring text indexes in Standard

version 6-15
and turning off optimization 7-1

sp_text_online system procedure 3-9, A-31
to A-32

example 3-13
sp_traceoff remote procedure call 6-11,

7-2
sp_traceon remote procedure call 6-11,

7-2
SQL parsing, tracing 6-11
Square brackets []

in SQL statements xix

Index-8

Full-Text Search SDS Version 11.9.2

srv_traceflags configuration
parameter 6-5, 6-12

Starting the Full-Text Search engine
from Sybase Central 6-2
on UNIX platforms 6-1
on Windows NT 6-2 to 6-4
as a service 6-3

startserver utility 6-1
Start-up

and setting the number of user
connections 7-4

Start-up commands
and the runserver file 6-1
on Windows NT 6-3

stem operator 5-9, 5-15
with the many modifier 5-19

style.dft file 4-6
style.prm file

editing an existing collection’s A-5
editing for an existing collection 4-3
editing the master 4-2
and enabling Verity functionality 4-1
location of an existing collection 4-3
location of master 4-2

style.ufl file 4-4, 4-6
style.vgw file 4-4, 4-6
Summarization

configuring for all tables 4-2
configuring for individual tables 4-3
enabling 4-1
writing queries requesting 5-6

summary pseudo column 5-3
enabling before using 4-1
using 5-6

sum operator 5-9, 5-15
Sybase Central, starting from 6-2
Symbols in SQL statements xix
Synonym list for a custom thesaurus 4-9
synonyms: statement 4-9
Syntax, alternative Verity 5-10
Syntax conventions, Transact-SQL xviii
sysservers table

adding Full-Text Search engines 7-6
System procedures

See also individual system procedures
list of A-1
sp_clean_text_events A-2
sp_clean_text_indexes A-3
sp_create_text_index A-4 to A-6
sp_drop_text_index A-7 to A-8
sp_help_text_index A-9
sp_optimize_text_index A-10 to A-11
sp_redo_text_events A-12 to A-13
sp_refresh_text_index A-14 to A-15
sp_show_text_online A-16 to A-17
sp_text_cluster A-18 to A-20
sp_text_configure A-21 to A-22
sp_text_dump_database A-23 to A-25
sp_text_kill A-26 to A-27
sp_text_load_index A-28 to A-29
sp_text_notify A-30
sp_text_online A-31 to A-32

System tables
updating A-1

T
TDS data, tracing 6-12
TDS headers, tracing 6-12
TDS tokens, tracing 6-12
text_db database 2-2

backing up in the Enhanced
version 6-16, A-23

backing up in the Standard
version 6-13, 6-14

changing the name of 3-2, 3-5
restoring from backup in Enhanced

version 6-16, 6-17
restoring from backup in Standard

version 6-15
and the vesauxcol table 2-3
and the vesaux table 2-3

text_events table 2-4
backing up in the Enhanced

version 6-16
backing up in the Standard

version 6-13
changing the status of entries A-12

Full-Text Search Specialty Data Store User’s Guide Index-9

Full-Text Search SDS Version 11.9.2

columns in 2-4
creating 3-4
example of creating 3-11
recording inserts, updates, and

deletes A-14
removing entries from A-2
restoring from backup in Enhanced

version 6-16, 6-17
restoring from backup in Standard

version 6-15
and sp_text_dump_database 6-17, A-25
and sp_text_load_index 6-18

Text documents, types of 2-1
Text indexes

backing up in the Enhanced
version 6-16, A-23

backing up in the Standard
version 6-13, 6-14

bringing online A-31
creating 3-7, A-4
creating and batch sizes 7-4
displaying a list of A-9
displaying online A-16
dropping A-7
example of creating 3-11 to 3-13
and the index table 2-3
metadata 2-2
that include multiple columns 3-8
optimizing A-10
performance issues when

updating 7-5
placing on multiple Full-Text Search

engines 7-5
and reindexing A-12
replicating 3-10
restoring from backup in Enhanced

version 6-16
restoring from backup in Standard

version 6-15, 6-17
setting location of backup files 6-6
and tracing information 6-11
update using text_events table 2-4
updating 7-1
using a document filter with 4-6

textsvr.cfg file
sample B-1 to B-4

Thesaurus, custom 4-7
and creating the control file 4-9
and examining the default

thesaurus 4-8
and the mksyd utility 4-10
and replacing the default

thesaurus 4-10
thesaurus operator 5-9, 5-15

using a custom thesaurus 4-7
Timestamp

sorting by 6-10
topicEDITOR 4-13
topic operator 4-14, 5-9, 5-16
Topics

creating a knowledge base map 4-14
creating an outline file 4-12
creating a topic set directory 4-13
creating complex relationships 4-13
description of 4-11
executing queries using 4-14
sample files 4-12
troubleshooting 4-15

Topic set directories 4-13
mapping to 4-14

Trace flags 6-10
enabling trace flags 11 and 12 7-1
Open Server 6-12
setting to examine join orders 7-2

traceflags configuration parameter 6-5
Triggers for running

sp_refresh_text_index 3-10

U
Unicode

and wildcard searches 6-11
Unique index

adding to an IDENTITY column 3-7
example of creating 3-12

update operations
creating triggers for 3-10

Updates

Index-10

Full-Text Search SDS Version 11.9.2

and updating the text indexes 2-4
update statistics

disabling 7-1
Updating indexes 7-1
User

connections 7-4
sessions 7-4

User databases
backing up in the Enhanced

version A-23
backing up in the Standard

version 6-14, 6-16
bringing online automatically 6-6
bringing online for full-text

searches 3-9, A-31
displaying a list of text indexes

for A-9
displaying online A-16
restoring from backup in Enhanced

version 6-16, 6-17
restoring from backup in Standard

version 6-15
User table. See Source table

V
vdkCharset configuration parameter 6-5

setting the default 6-8
vdkHome configuration parameter 6-5
vdkLanguage configuration parameter 6-5

setting the default 6-7
Verity

setting the Verity directory 6-5
tracing Verity processing 6-11

Verity collections. See Collections
Verity query. See Full-text search queries
Verity Search ’97 1-1
vesauxcol table

columns in 2-3
removing entries when dropping text

indexes A-7
updating 3-7

vesaux table
columns in 2-3

creating entries A-5
removing entries from A-3
removing entries when dropping text

indexes A-7
updating 3-7

W
wildcard operator 5-9, 5-17

using with data in Unicode
format 6-11

with the case modifier 5-19
with the many modifier 5-19

Windows NT
directory paths xviii

word operator 5-9, 5-18
with the case modifier 5-19
with the many modifier 5-19

writetext command, using triggers
with 3-10

Y
yesno operator 5-9, 5-18

Z
Zones. See Document zones

